Coalescence of Al0.3CoCrFeNi polycrystalline high-entropy alloy in hot-pressed sintering: a molecular dynamics and phase-field study

被引:104
作者
Guo, Qingwei [1 ]
Hou, Hua [1 ,2 ]
Wang, Kaile [1 ]
Li, Muxi [1 ]
Liaw, Peter K. [3 ]
Zhao, Yuhong [1 ,4 ,5 ]
机构
[1] North Univ China, Collaborat Innovat Ctr, Sch Mat Sci & Engn, Minist Educ & Shanxi Prov High performance Al Mg A, Taiyuan 030051, Peoples R China
[2] Taiyuan Univ Sci & Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN USA
[4] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[5] Liaoning Acad Mat, Inst Mat Intelligent Technol, Shenyang 110004, Peoples R China
基金
中国国家自然科学基金;
关键词
MECHANICAL-PROPERTIES; MICROSTRUCTURE; NANOPARTICLES; NANO; PRECIPITATION; SIMULATION; BEHAVIORS; PARTICLES; STRENGTH;
D O I
10.1038/s41524-023-01139-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Existing hot sintering models based on molecular dynamics focus on single-crystal alloys. This work proposes a new multiparticle model based on molecular dynamics to investigate coalescence kinetics during the hot-pressed sintering of a polycrystalline Al0.3CoCrFeNi high-entropy alloy. The accuracy and effectiveness of the multiparticle model are verified by a phase-field model. Using this model, it is found that when the particle contact zones undergo pressure-induced evolution into exponential power creep zones, the occurrences of phenomena, such as necking, pore formation/filling, dislocation accumulation/decomposition, and particle rotation/rearrangement are accelerated. Based on tensile test results, Young's modulus of the as-sintered Al0.3CoCrFeNi high-entropy alloy is calculated to be 214.11 +/- 1.03 GPa, which deviates only 0.82% from the experimental value, thus further validating the feasibility and accuracy of the multiparticle model.
引用
收藏
页数:13
相关论文
共 58 条
[1]   Mechanical properties are affected by coalescence mechanisms during sintering of metal powders: Case study of Al-Cu nanoparticles by molecular dynamics simulation [J].
Abedini, A. ;
Montazeri, A. ;
Malti, A. ;
Kardani, A. .
POWDER TECHNOLOGY, 2022, 405
[2]   Phase field modeling of the effect of porosity on grain growth kinetics in polycrystalline ceramics [J].
Ahmed, K. ;
Yablinsky, C. A. ;
Schulte, A. ;
Allen, T. ;
El-Azab, A. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (06)
[3]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[4]   Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size [J].
Chen, Chuantong ;
Suganuma, Katsuaki .
MATERIALS & DESIGN, 2019, 162 :311-321
[5]   From classical thermodynamics to phase-field method [J].
Chen, Long-Qing ;
Zhao, Yuhong .
PROGRESS IN MATERIALS SCIENCE, 2022, 124
[6]   Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings [J].
Cheng, J. B. ;
Liang, X. B. ;
Xu, B. S. .
SURFACE & COATINGS TECHNOLOGY, 2014, 240 :184-190
[7]   Recovery of cold-worked Al0.3CoCrFeNi complex concentrated alloy through twinning assisted B2 precipitation [J].
Dasari, S. ;
Sarkar, A. ;
Sharma, A. ;
Gwalani, B. ;
Choudhuri, D. ;
Soni, V. ;
Manda, S. ;
Samajdar, I. ;
Banerjee, R. .
ACTA MATERIALIA, 2021, 202 :448-462
[8]  
Faken D., 1994, Computational Materials Science, V2, P279, DOI 10.1016/0927-0256(94)90109-0
[9]   Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys [J].
Farkas, Diana ;
Caro, Alfredo .
JOURNAL OF MATERIALS RESEARCH, 2020, 35 (22) :3031-3040
[10]   High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J].
George, E. P. ;
Curtin, W. A. ;
Tasan, C. C. .
ACTA MATERIALIA, 2020, 188 :435-474