Hierarchy of partially synchronous states in a ring of coupled identical oscillators

被引:0
作者
Zhang, Mei [1 ]
Yang, Yuhe [2 ]
Yang, Junzhong [3 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Peking Univ, Sch Math, Beijing 100871, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
CHAOTIC OSCILLATORS; SYNCHRONIZATION; DYNAMICS; NETWORKS;
D O I
10.1103/PhysRevE.108.034202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In coupled identical oscillators, complete synchronization has been well formulated; however, partial synchronization still calls for a general theory. In this work, we study the partial synchronization in a ring of N locally coupled identical oscillators. We first establish the correspondence between partially synchronous states and conjugacy classes of subgroups of the dihedral group DN. Then we present a systematic method to identify all partially synchronous dynamics on their synchronous manifolds by reducing a ring of oscillators to short chains with various boundary conditions. We find that partially synchronous states are organized into a hierarchical structure and, along a directed path in the structure, upstream partially synchronous states are less synchronous than downstream ones.
引用
收藏
页数:11
相关论文
共 37 条
[11]   Symmetry types and phase-shift synchrony in networks [J].
Golubitsky, Martin ;
Messi, Leopold Matamba ;
Spardy, Lucy E. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 320 :9-18
[12]   From low-dimensional synchronous chaos to high-dimensional desynchronous spatiotemporal chaos in coupled systems [J].
Hu, G ;
Zhang, Y ;
Cerdeira, HA ;
Chen, SG .
PHYSICAL REVIEW LETTERS, 2000, 85 (16) :3377-3380
[13]   Instability and controllability of linearly coupled oscillators: Eigenvalue analysis [J].
Hu, G ;
Yang, JZ ;
Liu, WJ .
PHYSICAL REVIEW E, 1998, 58 (04) :4440-4453
[14]   Generic behavior of master-stability functions in coupled nonlinear dynamical systems [J].
Huang, Liang ;
Chen, Qingfei ;
Lai, Ying-Cheng ;
Pecora, Louis M. .
PHYSICAL REVIEW E, 2009, 80 (03)
[15]   Pattern formation in a four-ring reaction-diffusion network with heterogeneity [J].
Hunter, Ian ;
Norton, Michael M. ;
Chen, Bolun ;
Simonetti, Chris ;
Moustaka, Maria Eleni ;
Touboul, Jonathan ;
Fraden, Seth .
PHYSICAL REVIEW E, 2022, 105 (02)
[16]   Pattern Formation with Trapped Ions [J].
Lee, Tony E. ;
Cross, M. C. .
PHYSICAL REVIEW LETTERS, 2011, 106 (14)
[17]  
Liu WY, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066211
[18]   Functional control of oscillator networks [J].
Menara, Tommaso ;
Baggio, Giacomo ;
Bassett, Dani ;
Pasqualetti, Fabio .
NATURE COMMUNICATIONS, 2022, 13 (01)
[19]   Turing patterns in network-organized activator-inhibitor systems [J].
Nakao, Hiroya ;
Mikhailov, Alexander S. .
NATURE PHYSICS, 2010, 6 (07) :544-550
[20]   Matryoshka and disjoint cluster synchronization of networks [J].
Nazerian, Amirhossein ;
Panahi, Shirin ;
Leifer, Ian ;
Phillips, David ;
Makse, Hernan A. ;
Sorrentino, Francesco .
CHAOS, 2022, 32 (04)