Intra-operative applications of augmented reality in glioma surgery: a systematic review

被引:12
作者
Ragnhildstveit, Anya [1 ,2 ]
Li, Chao [3 ,4 ]
Zimmerman, Mackenzie H. [1 ]
Mamalakis, Michail [2 ]
Curry, Victoria N. [1 ,5 ]
Holle, Willis [1 ,6 ]
Baig, Noor [1 ,7 ]
Uguralp, Ahmet K. [1 ]
Alkhani, Layth [1 ,8 ]
Oguz-Uguralp, Zeliha [1 ]
Romero-Garcia, Rafael [2 ,9 ]
Suckling, John [2 ]
机构
[1] Integrated Res Literacy Grp, Draper, UT 84020 USA
[2] Univ Cambridge, Dept Psychiat, Cambridge, England
[3] Univ Cambridge, Dept Clin Neurosci, Cambridge, England
[4] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[5] Univ Penn, Dept Bioengn, Philadelphia, PA USA
[6] Univ Utah, Dept Phys & Astron, Salt Lake City, UT USA
[7] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA USA
[8] Stanford Univ, Dept Biol, Stanford, CA USA
[9] Univ Seville, Inst Biomed Sevilla IBiS, HUVR, CSIC,Dept Fisiol Med & Biofis, Seville, Spain
关键词
augmented reality; brain tumor; glioma; mixed reality; neuronavigation; neurosurgery; systematic review; virtual reality; LOW-GRADE GLIOMAS; BRAIN-TUMORS; NEURONAVIGATION; RESECTION; MRI; NAVIGATION; ATLAS;
D O I
10.3389/fsurg.2023.1245851
中图分类号
R61 [外科手术学];
学科分类号
摘要
BackgroundAugmented reality (AR) is increasingly being explored in neurosurgical practice. By visualizing patient-specific, three-dimensional (3D) models in real time, surgeons can improve their spatial understanding of complex anatomy and pathology, thereby optimizing intra-operative navigation, localization, and resection. Here, we aimed to capture applications of AR in glioma surgery, their current status and future potential.MethodsA systematic review of the literature was conducted. This adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. PubMed, Embase, and Scopus electronic databases were queried from inception to October 10, 2022. Leveraging the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) framework, study eligibility was evaluated in the qualitative synthesis. Data regarding AR workflow, surgical application, and associated outcomes were then extracted. The quality of evidence was additionally examined, using hierarchical classes of evidence in neurosurgery.ResultsThe search returned 77 articles. Forty were subject to title and abstract screening, while 25 proceeded to full text screening. Of these, 22 articles met eligibility criteria and were included in the final review. During abstraction, studies were classified as "development" or "intervention" based on primary aims. Overall, AR was qualitatively advantageous, due to enhanced visualization of gliomas and critical structures, frequently aiding in maximal safe resection. Non-rigid applications were also useful in disclosing and compensating for intra-operative brain shift. Irrespective, there was high variance in registration methods and measurements, which considerably impacted projection accuracy. Most studies were of low-level evidence, yielding heterogeneous results.ConclusionsAR has increasing potential for glioma surgery, with capacity to positively influence the onco-functional balance. However, technical and design limitations are readily apparent. The field must consider the importance of consistency and replicability, as well as the level of evidence, to effectively converge on standard approaches that maximize patient benefit.
引用
收藏
页数:18
相关论文
共 82 条
[61]  
Page MJ, 2021, INT J SURG, V88, DOI [10.1016/j.jclinepi.2021.02.003, 10.1016/j.ijsu.2021.105906, 10.1186/s13643-021-01626-4]
[62]   Diffuse low-grade oligodendrogliomas extend beyond MRI-defined abnormalities [J].
Pallud, J. ;
Varlet, P. ;
Devaux, B. ;
Geha, S. ;
Badoual, M. ;
Deroulers, C. ;
Page, P. ;
Dezamis, E. ;
Daumas-Duport, C. ;
Roux, F. -X. .
NEUROLOGY, 2010, 74 (21) :1724-1731
[63]   Evidence-based recommendations for blinding in surgical trials [J].
Probst, Pascal ;
Zaschke, Steffen ;
Heger, Patrick ;
Harnoss, Julian C. ;
Huettner, Felix J. ;
Mihaljevic, Andre L. ;
Knebel, Phillip ;
Diener, Markus K. .
LANGENBECKS ARCHIVES OF SURGERY, 2019, 404 (03) :273-284
[64]   Placebo-Controlled Trials in Surgery A Systematic Review and Meta-Analysis [J].
Probst, Pascal ;
Grummich, Kathrin ;
Harnoss, Julian C. ;
Huettner, Felix J. ;
Jensen, Katrin ;
Braun, Silvia ;
Kieser, Meinhard ;
Ulrich, Alexis ;
Buechler, Markus W. ;
Diener, Markus K. .
MEDICINE, 2016, 95 (17)
[65]  
R-project, 2018, R LANG ENV STAT COMP
[66]   Twenty Years After Glioblastoma Multiforme Diagnosis: A Case of Long-Term Survival [J].
Rabab'h, Omar ;
Al-Ramadan, Ali ;
Shah, Jawad ;
Lopez-Negrete, Hugo ;
Gharaibeh, Abeer .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (06)
[67]   A FRAMELESS STEREOTAXIC INTEGRATION OF COMPUTERIZED TOMOGRAPHIC IMAGING AND THE OPERATING MICROSCOPE [J].
ROBERTS, DW ;
STROHBEHN, JW ;
HATCH, JF ;
MURRAY, W ;
KETTENBERGER, H .
JOURNAL OF NEUROSURGERY, 1986, 65 (04) :545-549
[68]   Is supratotal resection achievable in low-grade gliomas? Feasibility, putative factors, safety, and functional outcome [J].
Rossi, Marco ;
Ambrogi, Federico ;
Gay, Lorenzo ;
Gallucci, Marcello ;
Nibali, Marco Conti ;
Leonetti, Antonella ;
Puglisi, Guglielmo ;
Sciortino, Tommaso ;
Howells, Henrietta ;
Riva, Marco ;
Pessina, Federico ;
Navarria, Pierina ;
Franzese, Ciro ;
Simonelli, Matteo ;
Ruda, Roberta ;
Bello, Lorenzo .
JOURNAL OF NEUROSURGERY, 2020, 132 (06) :1692-1705
[69]   Classes of evidence in neurosurgery [J].
Rutka, James T. .
JOURNAL OF NEUROSURGERY, 2017, 126 (06) :1747-1748
[70]  
Sanai N, 2011, J NEUROSURG, V115, P948, DOI [10.3171/2011.7.JNS10238, 10.3171/2011.7.JNS101238]