VIUNet: Deep Visual-Inertial-UWB Fusion for Indoor UAV Localization

被引:9
作者
Kao, Peng-Yuan [1 ]
Chang, Hsiu-Jui [2 ]
Tseng, Kuan-Wei [3 ]
Chen, Timothy [2 ]
Luo, He-Lin [4 ]
Hung, Yi-Ping [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Networking & Multimedia, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[3] Tokyo Inst Technol, Dept Comp Sci, Tokyo 1528550, Japan
[4] Tainan Natl Univ Arts, Grad Inst Animat & Film Art, Tainan 72045, Taiwan
关键词
Visual-inertial odometry; ultra-wideband; sensor fusion; deep learning; ODOMETRY;
D O I
10.1109/ACCESS.2023.3279292
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Camera, inertial measurement unit (IMU), and ultra-wideband (UWB) sensors are commonplace solutions to unmanned aerial vehicle (UAV) localization problems. The performance of a localization system can be improved by integrating observations from different sensors. In this paper, we propose a learning-based UAV localization method using the fusion of vision, IMU, and UWB sensors. Our model consists of visual-inertial (VI) and UWB branches. We combine the estimation results of both branches to predict global poses. To evaluate our method, we augment a public VI dataset with UWB simulations and conduct a real-world experiment. The experimental results show that our method provides more robust and accurate results than VI/UWB-only localization. Our codes and data are available at https://imlabntu.github.io/VIUNet/.
引用
收藏
页码:61525 / 61534
页数:10
相关论文
共 32 条
  • [1] SelfVIO: Self-supervised deep monocular Visual-Inertial Odometry and depth estimation
    Almalioglu, Yasin
    Turan, Mehmet
    Saputra, Muhamad Risqi U.
    de Gusmao, Pedro P. B.
    Markham, Andrew
    Trigoni, Niki
    [J]. NEURAL NETWORKS, 2022, 150 : 119 - 136
  • [2] Review of visual odometry: types, approaches, challenges, and applications
    Aqel, Mohammad O. A.
    Marhaban, Mohammad H.
    Saripan, M. Iqbal
    Ismail, Napsiah Bt.
    [J]. SPRINGERPLUS, 2016, 5
  • [3] Multimodal Machine Learning: A Survey and Taxonomy
    Baltrusaitis, Tadas
    Ahuja, Chaitanya
    Morency, Louis-Philippe
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) : 423 - 443
  • [4] The EuRoC micro aerial vehicle datasets
    Burri, Michael
    Nikolic, Janosch
    Gohl, Pascal
    Schneider, Thomas
    Rehder, Joern
    Omari, Sammy
    Achtelik, Markus W.
    Siegwart, Roland
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (10) : 1157 - 1163
  • [5] A Review of Visual-Inertial Simultaneous Localization and Mapping from Filtering-Based and Optimization-Based Perspectives
    Chen, Chang
    Zhu, Hua
    Li, Menggang
    You, Shaoze
    [J]. ROBOTICS, 2018, 7 (03)
  • [6] Selective Sensor Fusion for Neural Visual-Inertial Odometry
    Chen, Changhao
    Rosa, Stefano
    Miao, Yishu
    Lu, Chris Xiaoxuan
    Wu, Wei
    Markham, Andrew
    Trigoni, Niki
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10534 - 10543
  • [7] Chen CH, 2018, AAAI CONF ARTIF INTE, P6468
  • [8] Clark R, 2017, AAAI CONF ARTIF INTE, P3995
  • [9] A Review of Visual-LiDAR Fusion based Simultaneous Localization and Mapping
    Debeunne, Cesar
    Vivet, Damien
    [J]. SENSORS, 2020, 20 (07)
  • [10] FlowNet: Learning Optical Flow with Convolutional Networks
    Dosovitskiy, Alexey
    Fischer, Philipp
    Ilg, Eddy
    Haeusser, Philip
    Hazirbas, Caner
    Golkov, Vladimir
    van der Smagt, Patrick
    Cremers, Daniel
    Brox, Thomas
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2758 - 2766