Electrical Treeing of SiR and SiR/Fe3O4 Nanocomposites in High Magnetic Field

被引:1
作者
Wang, Mingyang [1 ]
Yin, Xuegong [1 ]
Liu, Yuhao [1 ]
Du, Boxue [2 ]
Xue, Congzhao [1 ]
机构
[1] State Grid Tianjin High Voltage Co, Tianjin 300000, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300000, Peoples R China
关键词
Magnetic fields; Insulation; Iron; Electrodes; Nanoparticles; Superconducting magnets; Nanocomposites; Magnetic field; electrical tree; nanocomposites; quantum dot;
D O I
10.1109/ACCESS.2023.3280051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the effects of high magnetic field on electrical treeing of silicone rubber (SiR). Experimental results show that electrical trees are more easily to be initiated and spread further along the direction of electric field under the effects of high magnetic field. When the direction of high magnetic field is perpendicular to that of electric field, magnetic field with higher magnetic flux density also results in larger accumulated damage area. Splitting of energy band structure and changes in polarization characteristics result in a lower interface barrier and more serious partial discharge, thus causing the weakened resistance to electrical treeing in high magnetic field. Based on the insulation degradation mechanism, SiR was modified by adding ferroferric oxide (Fe3O4) nanoparticles to improve its insulation performance in high magnetic field. Moderate addition amount of Fe3O4 nanoparticles is proved to be able to suppress electrical treeing in high magnetic field by forming quantum dots, modifying polarization properties and partial discharge behavior. Excessive addition of Fe3O4 nanoparticles has negative effects on suppressing electrical treeing due to the magnetization of the nanocomposites.
引用
收藏
页码:52614 / 52621
页数:8
相关论文
共 50 条
[41]   Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness [J].
Gu, Shu-Ying ;
Jin, Sheng-Peng ;
Gao, Xie-Feng ;
Mu, Jian .
SMART MATERIALS AND STRUCTURES, 2016, 25 (05)
[42]   Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites [J].
Padalia, Diwakar ;
Johri, U. C. ;
Zaidi, M. G. H. .
PHYSICA B-CONDENSED MATTER, 2012, 407 (05) :838-843
[43]   Selective electrochemical sensing for arsenite using rGO/Fe3O4 nanocomposites [J].
Devi, Pooja ;
Sharma, Chhavi ;
Kumar, Praveen ;
Kumar, Mahesh ;
Bansod, Baban K. S. ;
Nayak, Manoj K. ;
Singla, Madan L. .
JOURNAL OF HAZARDOUS MATERIALS, 2017, 322 :85-94
[44]   Enhancing photocatalytic performance of Fe3O4 nanoparticles and Fe3O4@ZnO nanocomposites [J].
Anjali, Aarti ;
Gupta, Aarti ;
Tripathi, Babita ;
Sahni, Mohit ;
Sharma, Kuldeep ;
Ranjan, Nishant ;
Yahya, M. Z. A. ;
Noor, I. M. ;
Pandit, Soumya .
IONICS, 2024, 30 (12) :8267-8279
[45]   Magnetic carbon Fe3O4 nanocomposites synthesized via Magnetic Induction Heating [J].
Cervera-Gabalda, L. ;
Gomez-Polo, C. .
SCIENTIFIC REPORTS, 2023, 13 (01)
[46]   Synthesis and Characterization of the Superparamagnetic Fe3O4/Ag Nanocomposites [J].
Ramesh, R. ;
Geerthana, M. ;
Prabhu, S. ;
Sohila, S. .
JOURNAL OF CLUSTER SCIENCE, 2017, 28 (03) :963-969
[47]   Synthesis and Characterization of the Superparamagnetic Fe3O4/Ag Nanocomposites [J].
R. Ramesh ;
M. Geerthana ;
S. Prabhu ;
S. Sohila .
Journal of Cluster Science, 2017, 28 :963-969
[48]   The Graphene/Fe3O4 Nanocomposites as Electrode Materials of Supercapacitors [J].
Zhang, Jiaoxia ;
Gao, Yifeng ;
Jiao, Yueting ;
Pu, Liuyue ;
Li, Shiyun ;
Tang, Jijun ;
Zhang, Yamei .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (05) :3164-3173
[49]   Preparation and Properties of Fibrous Fe3O4/Polyaniline Nanocomposites [J].
Wang, Li ;
Zhang, Xin .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (04) :3157-3160
[50]   Fe/Fe3O4 nanocomposite powders with giant high magnetization values by high energy ball milling [J].
Ramya, V. ;
Gangwar, A. ;
Shaw, S. K. ;
Mukhopadhyay, N. K. ;
Prasad, N. K. .
BULLETIN OF MATERIALS SCIENCE, 2019, 42 (03)