Wolff potentials and measure data vectorial problems with Orlicz growth

被引:5
作者
Chlebicka, Iwona [1 ]
Youn, Yeonghun [2 ]
Zatorska-Goldstein, Anna [1 ]
机构
[1] Univ Warsaw, Inst Appl Math & Mech, ul Banacha 2, PL-02097 Warsaw, Poland
[2] Yeungnam Univ, Dept Math, Gyongsan 38541, Gyeongbuk, South Korea
关键词
35B45; 35J47; NONLINEAR ELLIPTIC-SYSTEMS; PARTIAL REGULARITY; HARMONIC APPROXIMATION; NONSTANDARD GROWTH; WEAK SOLUTIONS; EQUATIONS; GRADIENT; FUNCTIONALS; MINIMIZERS; EXISTENCE;
D O I
10.1007/s00526-022-02402-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study solutions to measure data elliptic systems with Uhlenbeck-type structure that involve operator of divergence form, depending continuously on the spacial variable, and exposing doubling Orlicz growth with respect to the second variable. Pointwise estimates for the solutions that we provide are expressed in terms of a nonlinear potential of generalized Wolff type. Not only we retrieve the recent sharp results proven for p-Laplace systems, but additionally our study covers the natural scope of operators with similar structure and natural class of Orlicz growth.
引用
收藏
页数:41
相关论文
共 85 条
  • [1] Adams D.R., 1996, FUNCTION SPACES POTE, V314
  • [2] Adams R. A., 1975, SOBOLEV SPACES
  • [3] Fully anisotropic elliptic problems with minimally integrable data
    Alberico, Angela
    Chlebicka, Iwona
    Cianchi, Andrea
    Zatorska-Goldstein, Anna
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
  • [4] A pointwise differential inequality and second-order regularity for nonlinear elliptic systems
    Balci, Anna Kh.
    Cianchi, Andrea
    Diening, Lars
    Maz'ya, Vladimir
    [J]. MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1775 - 1824
  • [5] Riesz potential estimates for a general class of quasilinear equations
    Baroni, Paolo
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) : 803 - 846
  • [6] ELLIPTIC INTERPOLATION ESTIMATES FOR NON-STANDARD GROWTH OPERATORS
    Baroni, Paolo
    Habermann, Jens
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2014, 39 (01) : 119 - 162
  • [7] Lipschitz Bounds and Nonuniform Ellipticity
    Beck, Lisa
    Mingione, Giuseppe
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (05) : 944 - 1034
  • [8] Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
  • [9] NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA
    BOCCARDO, L
    GALLOUET, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) : 149 - 169
  • [10] Pointwise Calderon-Zygmund gradient estimates for the p-Laplace system
    Breit, Dominic
    Cianchi, Andrea
    Diening, Lars
    Kuusi, Tuomo
    Schwarzacher, Sebastian
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 114 : 146 - 190