Commuting Toeplitz and small Hankel operators on the Bergman space

被引:0
作者
Wang, Jiawei [1 ]
Zhang, Jie [1 ]
Zhao, Xianfeng [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz operator; Small Hankel operator; Bergman space; Commutativity; HARDY SPACE; SYMBOLS;
D O I
10.1007/s13348-024-00438-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows that on the Bergman space of the open unit disk, the Toeplitz operator Tp over bar +phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{{\overline{p}}+\varphi }$$\end{document} and the small Hankel operator Gamma psi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\psi$$\end{document} commute only in the obvious cases, where phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and psi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document} are both bounded analytic functions, and p is an analytic polynomial.
引用
收藏
页码:417 / 433
页数:17
相关论文
共 24 条
[1]   COMMUTING TOEPLITZ-OPERATORS WITH HARMONIC SYMBOLS [J].
AXLER, S ;
CUCKOVIC, Z .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (01) :1-12
[2]  
Axler S., 1988, Surveys of Some Recent Results in Operator Theory, VI, P1
[3]   Commuting Toeplitz operators with pluriharmonic symbols on the Fock space [J].
Bauer, Wolfram ;
Choe, Boo Rim ;
Koo, Hyungwoon .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (10) :3017-3060
[4]   Commuting Toeplitz operators on the Segal-Bargmann space [J].
Bauer, Wolfram ;
Lee, Young Joo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (02) :460-489
[5]  
BROWN ARLEN, 1963, J. Reine Angew. Math., V213, P89
[6]   Commuting Toeplitz operators on the Dirichlet space [J].
Chen, Yong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :214-224
[7]  
Choe BR, 1999, MICH MATH J, V46, P163
[8]   Mellin transform, monomial symbols, and commuting Toeplitz operators [J].
Cuckovic, Z ;
Rao, NV .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :195-214
[9]   Commuting Toeplitz operators on the bidisk [J].
Ding, Xuanhao ;
Sun, Shunhua ;
Zheng, Dechao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (11) :3333-3357
[10]  
Duren P., 2004, Mathematical Surveys and Monographs, V100, DOI [10.1090/surv/100, DOI 10.1090/SURV/100]