Commuting Toeplitz and small Hankel operators on the Bergman space

被引:0
作者
Wang, Jiawei [1 ]
Zhang, Jie [1 ]
Zhao, Xianfeng [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Toeplitz operator; Small Hankel operator; Bergman space; Commutativity; HARDY SPACE; SYMBOLS;
D O I
10.1007/s13348-024-00438-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows that on the Bergman space of the open unit disk, the Toeplitz operator Tp over bar +phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{{\overline{p}}+\varphi }$$\end{document} and the small Hankel operator Gamma psi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _\psi$$\end{document} commute only in the obvious cases, where phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi$$\end{document} and psi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document} are both bounded analytic functions, and p is an analytic polynomial.
引用
收藏
页数:17
相关论文
共 24 条