Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes

被引:0
|
作者
Li, Yang [1 ]
Zhu, Shixin [1 ]
Zhang, Yanhui [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Reed-Solomon code; QECC; EAQECC; MDS code; Hermitian self-orthogonal code; STABILIZER CODES; QUANTUM;
D O I
10.1007/s11128-024-04319-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum distance separable (MDS) quantum error-correcting codes (QECCs) and MDS entanglement-assisted QECCs (EAQECCs) play significant roles in quantum information theory. In this paper, we construct several new families of MDS QECCs and MDS EAQECCs by utilizing Hermitian self-orthogonal generalized Reed-Solomon codes. These newly obtained MDS QECCs contain some known classes of MDS QECCs as subclasses and some of them have larger minimum distance. In addition, many q-ary MDS QECCs and MDS EAQECCs in our constructions have length exceeding q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} and minimum distance surpassing q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}+1$$\end{document}.
引用
收藏
页数:17
相关论文
共 27 条
  • [11] Construction of Hermitian Self-Orthogonal Codes and Application
    Ren, Yuezhen
    Li, Ruihu
    Song, Hao
    MATHEMATICS, 2024, 12 (13)
  • [12] Constructing self-orthogonal and Hermitian self-orthogonal codes via weighing matrices and orbit matrices
    Crnkovic, Dean
    Egan, Ronan
    Svob, Andrea
    FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 64 - 77
  • [13] Some constructions of quantum MDS codes and EAQMDS codes from GRS codes
    Tian, Fuyin
    Li, Lanqiang
    Wu, Tingting
    Chen, Xiaojing
    QUANTUM INFORMATION PROCESSING, 2024, 23 (07)
  • [14] Quantum Stabilizer Codes Construction from Hermitian Self-Orthogonal Codes over GF(4)
    Duc Manh Nguyen
    Kim, Sunghwan
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2018, 20 (03) : 309 - 315
  • [15] Euclidean and Hermitian Self-Orthogonal Algebraic Geometry Codes and Their Application to Quantum Codes
    Jin, Lingfei
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) : 5484 - 5489
  • [16] Three families of self-orthogonal codes and their application in optimal quantum codes
    Li, Dexiang
    Heng, Ziling
    Li, Chengju
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [17] MDS, Hermitian almost MDS, and Gilbert-Varshamov quantum codes from generalized monomial-Cartesian codes
    Barbero-Lucas, Beatriz
    Hernando, Fernando
    Martin-Cruz, Helena
    McGuire, Gary
    QUANTUM INFORMATION PROCESSING, 2024, 23 (03)
  • [18] On the Construction of Hermitian Self-Orthogonal Codes Over F9 and Their Application
    Li, Zhihao
    Li, Ruihu
    Guan, Chaofeng
    Song, Hao
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (09)
  • [19] New MDS EAQECCs from constacyclic codes over finite non-chain rings
    Lin, Li
    Zhang, Yaozong
    Hou, Xiaotong
    Gao, Jian
    QUANTUM INFORMATION PROCESSING, 2023, 22 (06)
  • [20] Hermitian Self-Orthogonal Constacyclic Codes over F4m
    Guan Q.-Q.
    Kai X.-S.
    Zhu S.-X.
    Guan, Qian-Qing (gqianqing@sina.cn), 2017, Chinese Institute of Electronics (45): : 1469 - 1474