Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes

被引:0
|
作者
Li, Yang [1 ]
Zhu, Shixin [1 ]
Zhang, Yanhui [1 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Reed-Solomon code; QECC; EAQECC; MDS code; Hermitian self-orthogonal code; STABILIZER CODES; QUANTUM;
D O I
10.1007/s11128-024-04319-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Maximum distance separable (MDS) quantum error-correcting codes (QECCs) and MDS entanglement-assisted QECCs (EAQECCs) play significant roles in quantum information theory. In this paper, we construct several new families of MDS QECCs and MDS EAQECCs by utilizing Hermitian self-orthogonal generalized Reed-Solomon codes. These newly obtained MDS QECCs contain some known classes of MDS QECCs as subclasses and some of them have larger minimum distance. In addition, many q-ary MDS QECCs and MDS EAQECCs in our constructions have length exceeding q+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q+1$$\end{document} and minimum distance surpassing q2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{q}{2}+1$$\end{document}.
引用
收藏
页数:17
相关论文
共 27 条
  • [1] Several families of MDS QECCs and MDS EAQECCs from Hermitian self-orthogonal GRS codes
    Yang Li
    Shixin Zhu
    Yanhui Zhang
    Quantum Information Processing, 23
  • [2] TWO NEW CLASSES OF HERMITIAN SELF-ORTHOGONAL NON-GRS MDS CODES AND THEIR APPLICATIONS
    Luo, Gaojun
    Cao, Xiwang
    Ezerman, Martianus Frederic
    Ling, San
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 921 - 933
  • [3] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Hao Chen
    Designs, Codes and Cryptography, 2023, 91 : 2665 - 2676
  • [4] New MDS entanglement-assisted quantum codes from MDS Hermitian self-orthogonal codes
    Chen, Hao
    DESIGNS CODES AND CRYPTOGRAPHY, 2023, 91 (08) : 2665 - 2676
  • [5] Several classes of Galois self-orthogonal MDS codes and related applications
    Li, Yang
    Su, Yunfei
    Zhu, Shixin
    Li, Shitao
    Shi, Minjia
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [6] New MDS Euclidean Self-Orthogonal Codes
    Fang, Xiaolei
    Liu, Meiqing
    Luo, Jinquan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 130 - 137
  • [7] Euclidean and Hermitian Hulls of MDS Codes and Their Applications to EAQECCs
    Fang, Weijun
    Fu, Fang-Wei
    Li, Lanqiang
    Zhu, Shixin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (06) : 3527 - 3537
  • [8] New MDS self-dual codes from GRS codes and extended GRS codes
    Wan, Ruhao
    Zhu, Shixin
    Li, Jin
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [9] MDS codes with Euclidean and Hermitian hulls of flexible dimensions and their applications to EAQECCs
    Li, Yang
    Wan, Ruhao
    Zhu, Shixin
    QUANTUM INFORMATION PROCESSING, 2023, 22 (03)
  • [10] CONSTRUCTIONS OF SEVERAL FAMILIES OF MDS CODES AND NMDS CODES
    Yin, Yanan
    Yan, Haode
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, : 1222 - 1247