Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces

被引:1
作者
Shuja, Shujauddin [1 ]
Embong, Ahmad F. [1 ]
Ali, Nor M. M. [1 ]
机构
[1] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Malaysia
关键词
Non-Archimedean Banach spaces; general linear functional equation; hyperstability; fixed point method; STABILITY; MAPPINGS;
D O I
10.1134/S2070046624010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a normed space over F is an element of {R, C}, Y be a non-Archimedean Banach space over a non-Archimedean non-trivial field K and c, d, C, D be constants such that, c, d is an element of F \ {0} and C, D is an element of K \ {0}. In this paper, some preliminaries on non-Archimedean Banach spaces and the concept of hyperstability are presented. Next, the well-known fixed point method [7, Theorem1] is reformulated in non-Archimedean Banach spaces. Using this method, we prove that the general linear functional equation h(cx + dy) = Ch(x) + Dh(y) is hyperstable in the class of functions h : X -> Y. In fact, by exerting some natural assumptions on control function gamma : X-2 \ {0} -> R+, we show that the map h : X -> Y that satisfies the inequality ||h(cx + dy) - Ch(x) - Dh(y)||(*) <= gamma(x, y), is a solution to general linear functional equation for every x, y is an element of X \ {0}. Finally, this paper concludes with some consequences of the results.
引用
收藏
页码:70 / 81
页数:12
相关论文
共 48 条
[1]   Hyperstability of the Jensen functional equation in ultrametric spaces [J].
Almahalebi, Muaadh ;
Chahbi, Abdellatif .
AEQUATIONES MATHEMATICAE, 2017, 91 (04) :647-661
[2]  
[Anonymous], 2004, Problems in Modern Mathematics
[3]  
Aoki T., 1950, J Math Soc Jpn, V2, P64, DOI [DOI 10.2969/JMSJ/00210064, 10.2969/jmsj/00210064]
[4]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[5]   CLASSES OF TRANSFORMATIONS AND BORDERING TRANSFORMATIONS [J].
BOURGIN, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (04) :223-237
[7]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[8]   Remarks on stability of some inhomogeneous functional equations [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :83-96
[9]   A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION [J].
Brzdek, Janusz .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (01) :33-40
[10]   Stability of additivity and fixed point methods [J].
Brzdek, Janusz .
FIXED POINT THEORY AND APPLICATIONS, 2013,