Stochastic Computing-based on-chip Training Circuitry for Reservoir Computing Systems

被引:0
作者
Galan, Fabio
Font-Rossello, Joan [1 ,2 ]
Roca, Miquel [1 ,2 ]
Rossello, Josep L. [1 ,2 ]
机构
[1] Univ Balearic Isl, Elect Engn Grp, Ind Engn & Construct Dept, Ctra Valldemossa Km 7-5, Palma De Mallorca 07122, Spain
[2] Balearic Isl Hlth Res Inst IdISBa, Palma De Mallorca, Spain
来源
2023 38TH CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS, DCIS | 2023年
关键词
D O I
10.1109/DCIS58620.2023.10336006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reservoir Computing (RC) is considered an emerging computational paradigm for the analysis of temporal data, where the training of RC systems is usually implemented through the use of a linear regression. Most RC hardware approaches perform the training stage off-chip at the server, thereby increasing the processing time, the latency and the power dissipation. This work proposes a non-iterative supervised learning method for RC systems which consists of a tropical-algebra-based regression that has been implemented in hardware using Stochastic Computing techniques. Our approach is capable of integrating a non-iterative training together with the inference in a simple and compact circuitry.
引用
收藏
页数:6
相关论文
共 20 条
[1]   The Promise and Challenge of Stochastic Computing [J].
Alaghi, Armin ;
Qian, Weikang ;
Hayes, John P. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (08) :1515-+
[2]   FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting [J].
Alomar, Miquel L. ;
Canals, Vincent ;
Perez-Mora, Nicolas ;
Martinez-Moll, Victor ;
Rossello, Josep L. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
[3]   Digital Implementation of a Single Dynamical Node Reservoir Computer [J].
Alomar, Miquel L. ;
Soriano, Miguel C. ;
Escalona-Moran, Miguel ;
Canals, Vincent ;
Fischer, Ingo ;
Mirasso, Claudio R. ;
Rossello, Jose L. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (10) :977-981
[4]   On Learning Navigation Behaviors for Small Mobile Robots With Reservoir Computing Architectures [J].
Antonelo, Eric Aislan ;
Schrauwen, Benjamin .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (04) :763-780
[5]   An experimental characterization of reservoir computing in ambient assisted living applications [J].
Bacciu, Davide ;
Barsocchi, Paolo ;
Chessa, Stefano ;
Gallicchio, Claudio ;
Micheli, Alessio .
NEURAL COMPUTING & APPLICATIONS, 2014, 24 (06) :1451-1464
[6]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[7]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[8]  
Cuninghame-Green R.A., 1979, MINIMAX ALGEBRA
[9]   PROJECTIONS IN MINIMAX ALGEBRA [J].
CUNINGHAMEGREEN, RA .
MATHEMATICAL PROGRAMMING, 1976, 10 (01) :111-123
[10]  
Gaines B., 1969, ADV INFORM SYSTEMS S, P37, DOI [DOI 10.1007/978-1-4899-5841-9_2, 10.1007/978-1-4899-5841-9_2]