UTV decomposition of dual matrices and its applications

被引:10
作者
Xu, Renjie [1 ]
Wei, Tong [2 ]
Wei, Yimin [3 ]
Yan, Hong [4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[4] City Univ Hong Kong, Ctr Intelligent Multidimens Data Anal, Dept Elect Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual matrices; UTV decomposition; Low-rank approximation; Randomized algorithm; Traveling wave identification; Brain dynamics; ALGORITHMS; LANGUAGE;
D O I
10.1007/s40314-023-02565-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Matrix factorization in the context of dual numbers has found applications, in recent years, in fields such as kinematics and computer graphics. In this paper, we develop an efficient approach for handling large-scale data low-rank approximation problems using the UTV decomposition of dual matrices (DUTV). Theoretically, we propose an explicit expression for the DUTV and provide necessary and sufficient conditions for its existence. During this process, we also discovered that the general low-rank model for dual matrices can be solved by the Sylvester equation. In numerical experiments, the DUTV algorithm outperforms the dual matrix SVD algorithm in terms of speed and maintains effective performance in wave recognition. Subsequently, we utilize the DUTV algorithm to validate brain functional circuits in large-scale task-state functional magnetic resonance imaging data. Successfully identifying three types of wave signals, the DUTV method provides substantial empirical evidence for cognitive neuroscience theories.
引用
收藏
页数:18
相关论文
共 33 条
  • [1] Angeles J., 2012, Latest Advances in Robot Kinematics, P1, DOI 10.1007/978-94-007-4620-6_1
  • [2] MATRIX EQUATION AX-YB=C
    BAKSALARY, JK
    KALA, R
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 25 (01) : 41 - 43
  • [3] Baydin AG, 2018, J MACH LEARN RES, V18
  • [4] Mapping anterior temporal lobe language areas with fMRI: A multicenter normative study
    Binder, Jeffrey R.
    Gross, William L.
    Allendorfer, Jane B.
    Bonilha, Leonardo
    Chapin, Jessica
    Edwards, Jonathan C.
    Grabowski, Thomas J.
    Langfitt, John T.
    Loring, David W.
    Lowe, Mark J.
    Koenig, Katherine
    Morgan, Paul S.
    Ojemann, Jeffrey G.
    Rorden, Christopher
    Szaflarski, Jerzy P.
    Tivarus, Madalina E.
    Weaver, Kurt E.
    [J]. NEUROIMAGE, 2011, 54 (02) : 1465 - 1475
  • [5] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [6] Clifford M.A., 1871, Proc Lond Math Soc, Vs1-4, P381, DOI [10.1112/plms/s1-4.1.381, DOI 10.1112/PLMS/S1-4.1.381]
  • [7] A complex orthogonal decomposition for wave motion analysis
    Feeny, B. F.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2008, 310 (1-2) : 77 - 90
  • [8] Model-free control
    Fliess, Michel
    Join, Cedric
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (12) : 2228 - 2252
  • [9] FORNBERG B, 1988, MATH COMPUT, V51, P699, DOI 10.1090/S0025-5718-1988-0935077-0
  • [10] Language, mind and brain
    Friederici, Angela D.
    Chomsky, Noam
    Berwick, Robert C.
    Moro, Andrea
    Bolhuis, Johan J.
    [J]. NATURE HUMAN BEHAVIOUR, 2017, 1 (10): : 713 - 722