Sharp lower bounds on the metric dimension of circulant graphs

被引:1
|
作者
Knor, Martin [1 ]
Skrekovski, Riste [2 ,3 ]
Vetrik, Tomas [4 ]
机构
[1] Slovak Univ Technol Bratislava, Bratislava, Slovakia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Fac Informat Studies, Novo Mesto, Slovenia
[4] Univ Free State, Dept Math & Appl Math, Bloemfontein, South Africa
关键词
Cayley graph; distance; resolving set;
D O I
10.22049/cco.2023.28792.1725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For n >= 2t + 1 where t >= 1, the circulant graph C-n(1, 2, ... , t) consists of the vertices v(0), v(1), v(2), ... , v(n-1) and the edges v(i)v(i+1), v(i)v(i+2), ... , v(i)v(i+t), where i = 0, 1, 2, ... , n - 1, and the subscripts are taken modulo n. We prove that the metric dimension dim(C-n(1, 2, ... , t)) >= inverted right perpendicular2t/3inverted left perpendicular + 1 for t >= 5, where the equality holds if and only if t = 5 and n = 13. Thus dim(C-n(1, 2, ... , t)) >= inverted right perpendicular2t/3inverted left perpendicular + 2 for t >= 6. This bound 3 is sharp for every t >= 6.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 50 条
  • [1] On the metric dimension of circulant graphs
    Imran, Muhammad
    Baig, A. Q.
    Bokhary, Syed Ahtsham Ul Haq
    Javaid, Imran
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 320 - 325
  • [2] The Metric Dimension of Circulant Graphs
    Vetrik, Tomas
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (01): : 206 - 216
  • [3] On the metric dimension of circulant graphs
    Gao, Rui
    Xiao, Yingqing
    Zhang, Zhanqi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (02): : 328 - 337
  • [4] THE METRIC DIMENSION OF CIRCULANT GRAPHS
    Tapendra, B. C.
    Dueck, Shonda
    OPUSCULA MATHEMATICA, 2025, 45 (01) : 39 - 51
  • [5] On the metric dimension of circulant and Harary graphs
    Grigorious, Cyriac
    Manuel, Paul
    Miller, Mirka
    Rajan, Bharati
    Stephen, Sudeep
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 47 - 54
  • [8] ON THE METRIC DIMENSION OF CIRCULANT GRAPHS WITH 2 GENERATORS
    Du Toit, L.
    Vetrik, T.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (01): : 49 - 58
  • [9] The metric dimension of circulant graphs and Cayley hypergraphs
    Borchert, Adam
    Gosselin, Shonda
    UTILITAS MATHEMATICA, 2018, 106 : 125 - 147
  • [10] Some New General Lower Bounds for Mixed Metric Dimension of Graphs
    Danas, Milica Milivojevic
    Kratica, Jozef
    Savic, Aleksandar
    Maksimovic, Zoran Lj.
    FILOMAT, 2021, 35 (13) : 4275 - 4285