Optical loss analysis of Sb2S3 and Sb2Se3 thin film solar cells: A Quantitative Assessment

被引:0
|
作者
Hajjiah, Ali [1 ]
机构
[1] Kuwait Univ, Coll Engn & Petr, Dept Elect Engn, Kuwait, Kuwait
关键词
optical loss; antimony chalcogenide; absorptivity; solar cell; Sb2S3; Sb2Se3;
D O I
10.1088/1402-4896/ad0de2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Optical loss either by light reflection, or light absorption in different layers of a solar cell, can significantly impact short-circuit current density. In this paper, an optical model has been developed to analyze the optical loss in thin film solar cells made of CdS/Sb2S3 or CdS/Sb2Se3 antimony chalcogenide. This model is based on optical loss from absorption in thin layers and reflection at the interfaces of glass/TCO/CdS/(Sb2S3 or Sb2Se3) only by considering the optical properties of layers (refractive index and extinction coefficient). The transmission and reflection rate of Sb2S3 or Sb2Se3 show almost a similar trend. The absorptivity and relative loss in short-circuit current density (J(sc)) versus the thickness of Sb2S3 and Sb2Se3 layers was calculated for two different structures: glass/TCO/CdS/Sb2S3 and glass/TCO/CdS/Sb2Se3. The Sb2Se3 solar cell shows a slightly better conversion performance compared to Sb2S3 solar cell due to lower reflection loss. The light reflection was calculated at four interfaces. The transmission rate of light through TCO, ITO, and CdS layers was calculated to obtain an optimal thickness for these layers. TCO showed a higher transmission rate and thus is preferred in antimony solar cell structures. The variations of (J(sc)) and loss for J(sc) with different thicknesses of ITO (>20%) or TCO (<20%) contact layers, favoring TCO for its lower optical losses and higher J(sc) (24 mA cm(-2)).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Magnetron sputtering deposition and selenization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells
    Tang, Rong
    Chen, Xing-Ye
    Liang, Guang-Xing
    Su, Zheng-Hua
    Luo, Jing-ting
    Fan, Ping
    SURFACE & COATINGS TECHNOLOGY, 2019, 360 : 68 - 72
  • [2] Modeling a tandem solar cell based on Sb2S3 and Sb2Se3 absorber layers
    Hajjiah, Ali
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2024, 303
  • [3] Inheriting Sb2Se3 Nanorods on Sb2S3 Nanorod Arrays for Effective Light Harvesting and Charge Extraction in Solar Cells
    Zhou, Boyang
    Kimura, Takaki
    Okazaki, Yutaka
    Hachiya, Kan
    Sagawa, Takashi
    ACS APPLIED NANO MATERIALS, 2022, 5 (11) : 16082 - 16093
  • [4] Sb2Se3 sensitized heterojunction solar cells
    Kulkarni A.N.
    Arote S.A.
    Pathan H.M.
    Patil R.S.
    Mater. Renew. Sustain. Energy, 3 (3):
  • [5] Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells
    Wen, Xixing
    He, Yisu
    Chen, Chao
    Liu, Xinsheng
    Wang, Liang
    Yang, Bo
    Leng, Meiying
    Song, Huaibing
    Zeng, Kai
    Li, Dengbing
    Li, Kanghua
    Gao, Liang
    Tang, Jiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 172 : 74 - 81
  • [6] Mechanisms and modification of nonlinear shunt leakage in Sb2Se3 thin film solar cells
    Shen, Kai
    Ou, Chizhu
    Huang, Tailang
    Zhu, Hongbing
    Li, Jianjun
    Li, Zhiqiang
    Mai, Yaohua
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 : 58 - 65
  • [7] The low temperature pyrolysis preparation of thin film and its application in Sb2S3 thin film solar cells
    Cui, Xi
    Shi, Chengwu
    Ying, Chao
    Wang, Qi
    Sun, Xun
    Chen, Wangchao
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 137
  • [8] Two-terminal tandem solar cell with Sb2S3/Sb2Se3 absorber pair: achieving 14% power conversion efficiency
    Shrivastav, Nikhil
    Yadav, Vishal
    Bhattarai, Sagar
    Madan, Jaya
    Hossain, M. Khalid
    Samajdar, D. P.
    Dwivedi, D. K.
    Pandey, Rahul
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [9] Sb2Se3 heterostructure solar cells: Techniques to improve efficiency
    Singh, Yogesh
    Rani, Sanju
    Shashi
    Parmar, Rahul
    Kumari, Raman
    Kumar, Manoj
    Sairam, A. Bala
    Mamta
    Singh, V. N.
    SOLAR ENERGY, 2023, 249 : 174 - 182
  • [10] Thickness-dependent carriers transport in Sb2Se3 thin film solar cellsThickness-dependent carriers transport in Sb2Se3 thin film solar cellsZ.-X. Cao et al.
    Zi-Xiu Cao
    Chuan-Yu Liu
    Jian-Peng Li
    Jia-Bin Dong
    Shi-Hao Hu
    Wei-Huang Wang
    Xu Wu
    Yi Zhang
    Rare Metals, 2025, 44 (5) : 3051 - 3059