Poverty Mapping Under Area-Level Random Regression Coefficient Poisson Models

被引:2
作者
Diz-Rosales, Naomi [1 ]
Lombardia, Maria Jose [1 ]
Morales, Domingo [2 ]
机构
[1] Univ A Coruna, CITIC, La Coruna, Spain
[2] Univ Miguel Hernandez Elche, IUI CIO, Elche, Spain
关键词
Bootstrap; Poverty proportion; Random coefficient Poisson regression models; Small area estimation; AKAIKE INFORMATION; INDICATORS; ERROR; TIME; PROPORTIONS; PREDICTION; COUNTS;
D O I
10.1093/jssam/smad036
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Under an area-level random regression coefficient Poisson model, this article derives small area predictors of counts and proportions and introduces bootstrap estimators of the mean squared errors (MSEs). The maximum likelihood estimators of the model parameters and the mode predictors of the random effects are calculated by a Laplace approximation algorithm. Simulation experiments are implemented to investigate the behavior of the fitting algorithm, the predictors, and the MSE estimators with and without bias correction. The new statistical methodology is applied to data from the Spanish Living Conditions Survey. The target is to estimate the proportions of women and men under the poverty line by province.
引用
收藏
页码:404 / 434
页数:31
相关论文
共 50 条
[21]   A Framework for Producing Small Area Estimates Based on Area-Level Models in R [J].
Harmening, Sylvia ;
Kreutzmann, Ann-Kristin ;
Schmidt, Soeren ;
Salvati, Nicola ;
Schmid, Timo .
R JOURNAL, 2023, 15 (01) :316-341
[22]   Small area estimation under a spatially correlated multivariate area-level model [J].
Guha, Saurav ;
Chandra, Hukum .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2024, 187 (01) :60-82
[23]   Unifying small area estimators based on area-level and unit-level models through calibration [J].
Acero, William ;
Molina, Isabel ;
Marin, Juan Miguel .
JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2025,
[24]   Poverty mapping in small areas under a twofold nested error regression model [J].
Marhuenda, Yolanda ;
Molina, Isabel ;
Morales, Domingo ;
Rao, J. N. K. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2017, 180 (04) :1111-1136
[25]   Optimal designs in multiple group random coefficient regression models [J].
Prus, Maryna .
TEST, 2020, 29 (01) :233-254
[26]   Jointly modeling area-level crash rates by severity: a Bayesian multivariate random-parameters spatio-temporal Tobit regression [J].
Zeng, Qiang ;
Guo, Qiang ;
Wong, S. C. ;
Wen, Huiying ;
Huang, Heilai ;
Pei, Xin .
TRANSPORTMETRICA A-TRANSPORT SCIENCE, 2019, 15 (02) :1867-1884
[27]   Small area estimation of poverty proportions under unit-level temporal binomial-logit mixed models [J].
Tomáš Hobza ;
Domingo Morales ;
Laureano Santamaría .
TEST, 2018, 27 :270-294
[28]   Benchmarked empirical Bayes methods in multiplicative area-level models with risk evaluation [J].
Ghosh, M. ;
Kubokawa, T. ;
Kawakubo, Y. .
BIOMETRIKA, 2015, 102 (03) :647-659
[29]   Unit-level and area-level small area estimation under heteroscedasticity using digital aerial photogrammetry data [J].
Breidenbach, Johannes ;
Magnussen, Steen ;
Rahlf, Johannes ;
Astrup, Rasmus .
REMOTE SENSING OF ENVIRONMENT, 2018, 212 :199-211
[30]   Optimal designs for minimax-criteria in random coefficient regression models [J].
Maryna Prus .
Statistical Papers, 2019, 60 :465-478