A unified observability result for non-autonomous observation problems

被引:0
作者
Gabel, Fabian [1 ]
Seelmann, Albrecht [2 ]
机构
[1] TU Hamburg, Inst Math, Am Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] TU Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词
Banach space; Evolution family; Non-autonomous system; Null-controllability; Observability; Uncertainty principle; Dissipation estimate; Density point;
D O I
10.1007/s00013-023-01934-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A final-state observability result in the Banach space setting for non-autonomous observation problems is obtained that covers and extends all previously known results in this context, while providing a streamlined proof that follows the established Lebeau-Robbiano strategy.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条
[41]   A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system [J].
Jia Meng ;
Fan Yang-Yu ;
Tian Wei-Jian .
CHINESE PHYSICS B, 2011, 20 (03)
[42]   An integral control for synchronization of a class of unknown non-autonomous chaotic systems [J].
Lee, D. W. ;
Yoo, W. J. ;
Won, S. C. .
PHYSICS LETTERS A, 2010, 374 (41) :4231-4237
[43]   APPROXIMATE CONTROLLABILITY OF NONLOCAL PROBLEM FOR NON-AUTONOMOUS STOCHASTIC EVOLUTION EQUATIONS [J].
Chen, Pengyu ;
Zhang, Xuping .
EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03) :471-489
[44]   PERIODIC SOLUTIONS TO NON-AUTONOMOUS EVOLUTION EQUATIONS WITH MULTI-DELAYS [J].
Chen, Pengyu .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06) :2921-2939
[45]   Controllability analysis for a class of piecewise nonlinear impulsive non-autonomous systems [J].
Yan, Jiayuan ;
Zhang, Ding-Xue ;
Hu, Bin ;
Guan, Zhi-Hong ;
Chen, Guanrong ;
Cheng, Xin-Ming .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (02) :567-582
[46]   Design and Study of Memristor based Non-autonomous Chua's circuit [J].
Basha, Tawfiq ;
Mohamed, I. Raja ;
Chithra, A. .
2018 4TH INTERNATIONAL CONFERENCE ON DEVICES, CIRCUITS AND SYSTEMS (ICDCS), 2018, :203-206
[47]   A fast computing method to distinguish the hyperbolic trajectory of an non-autonomous system [J].
贾蒙 ;
樊养余 ;
田维坚 .
Chinese Physics B, 2011, 20 (03) :299-303
[48]   Representation of infinite-dimensional neutral non-autonomous control systems [J].
Elharfi, Abdelhadi ;
Bounit, Hamid ;
Hadd, Said .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) :497-512
[49]   Exponential Stability of Non-autonomous Systems with Time Delay on Time Scales [J].
Lu Xiaodong ;
Wang Yuzhen ;
Zhao Yige .
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, :1476-1480