A unified observability result for non-autonomous observation problems

被引:0
作者
Gabel, Fabian [1 ]
Seelmann, Albrecht [2 ]
机构
[1] TU Hamburg, Inst Math, Am Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] TU Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词
Banach space; Evolution family; Non-autonomous system; Null-controllability; Observability; Uncertainty principle; Dissipation estimate; Density point;
D O I
10.1007/s00013-023-01934-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A final-state observability result in the Banach space setting for non-autonomous observation problems is obtained that covers and extends all previously known results in this context, while providing a streamlined proof that follows the established Lebeau-Robbiano strategy.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条
[31]   Adaptive coupled synchronization of non-autonomous systems in ring networks [J].
Guo Liu-Xiao ;
Xu Zhen-Yuan ;
Hu Man-Feng .
CHINESE PHYSICS B, 2008, 17 (03) :836-841
[32]   The well-posedness of a parabolic non-autonomous semilinear equation [J].
Fkirine, Mohamed ;
Hadd, Said .
IFAC PAPERSONLINE, 2022, 55 (12) :198-201
[33]   Periodic solutions to non-autonomous second-order systems [J].
Wang, Haiyan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1271-1275
[34]   Harmonic solutions for a class of non-autonomous piecewise linear oscillators [J].
Zhou, Biliu ;
Chen, Hebai ;
Xu, Huidong ;
Zhang, Jianwen .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
[35]   Stochastic self-sustained oscillations of non-autonomous systems [J].
V. Anishchenko ;
T. Vadivasova ;
G. Strelkova .
The European Physical Journal Special Topics, 2010, 187 :109-125
[36]   Approximate Controllability of Non-autonomous Evolution System with Nonlocal Conditions [J].
Pengyu Chen ;
Xuping Zhang ;
Yongxiang Li .
Journal of Dynamical and Control Systems, 2020, 26 :1-16
[37]   Non-autonomous Evolution Equations of Parabolic Type with Non-instantaneous Impulses [J].
Chen, Pengyu ;
Zhang, Xuping ;
Li, Yongxiang .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
[38]   A Study on Non-autonomous Second Order Evolution Equations with Nonlocal Conditions [J].
Gou, Haide ;
Li, Yongxiang .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (03)
[39]   The convergence of a new symmetric iterative splitting method for non-autonomous systems [J].
Tanoglu, Gamze ;
Korkut, Sila .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (13-14) :1837-1846
[40]   Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions [J].
Fu, Xianlong ;
Rong, Huang .
AUTOMATION AND REMOTE CONTROL, 2016, 77 (03) :428-442