A unified observability result for non-autonomous observation problems

被引:0
作者
Gabel, Fabian [1 ]
Seelmann, Albrecht [2 ]
机构
[1] TU Hamburg, Inst Math, Am Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[2] TU Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
关键词
Banach space; Evolution family; Non-autonomous system; Null-controllability; Observability; Uncertainty principle; Dissipation estimate; Density point;
D O I
10.1007/s00013-023-01934-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A final-state observability result in the Banach space setting for non-autonomous observation problems is obtained that covers and extends all previously known results in this context, while providing a streamlined proof that follows the established Lebeau-Robbiano strategy.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 50 条
[21]   A unified treatment for controllability/observability problems of partial differential equations of second order [J].
Fu Xiaoyu .
2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, :2223-2228
[22]   Adaptive coupled synchronization of non-autonomous systems in ring networks [J].
过榴晓 ;
徐振源 ;
胡满峰 .
Chinese Physics B, 2008, (03) :836-841
[23]   A non-autonomous conservative system and its reconstitution in integral domain [J].
Mo Chen ;
Chao Wang ;
Huagan Wu ;
Quan Xu ;
Bocheng Bao .
Nonlinear Dynamics, 2021, 103 :643-655
[24]   Furstenberg family and multi-transitivity in non-autonomous systems [J].
Renukadevi, V .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2022, 28 (08) :1087-1102
[25]   Approximate Controllability of Non-autonomous Evolution System with Nonlocal Conditions [J].
Chen, Pengyu ;
Zhang, Xuping ;
Li, Yongxiang .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (01) :1-16
[26]   PULLBACK ATTRACTORS FOR A CLASS OF NON-AUTONOMOUS THERMOELASTIC PLATE SYSTEMS [J].
Bezerra, Flank D. M. ;
Carbone, Vera L. ;
Nascimento, Marcelo J. D. ;
Schiabel, Karina .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09) :3553-3571
[27]   Regularity properties for evolution families governed by non-autonomous forms [J].
Hafida Laasri .
Archiv der Mathematik, 2018, 111 :187-201
[28]   A non-autonomous conservative system and its reconstitution in integral domain [J].
Chen, Mo ;
Wang, Chao ;
Wu, Huagan ;
Xu, Quan ;
Bao, Bocheng .
NONLINEAR DYNAMICS, 2021, 103 (01) :643-655
[29]   Regularity properties for evolution families governed by non-autonomous forms [J].
Laasri, Hafida .
ARCHIV DER MATHEMATIK, 2018, 111 (02) :187-201
[30]   Non-autonomous Evolution Equations of Parabolic Type with Non-instantaneous Impulses [J].
Pengyu Chen ;
Xuping Zhang ;
Yongxiang Li .
Mediterranean Journal of Mathematics, 2019, 16