Candidate regulators of drought stress in tomato revealed by comparative transcriptomic and proteomic analyses

被引:8
|
作者
Liu, Minmin [1 ]
Zhao, Gangjun [2 ]
Huang, Xin [1 ]
Pan, Ting [1 ]
Chen, Wenjie [1 ]
Qu, Mei [1 ]
Ouyang, Bo [3 ]
Yu, Min [1 ]
Shabala, Sergey [1 ,4 ]
机构
[1] Foshan Univ, Int Res Ctr Environm Membrane Biol, Dept Hort, Foshan, Peoples R China
[2] Guangdong Acad Agr Sci, Vegetable Res Inst, Guangdong Key Lab New Technol Res Vegetables, Guangzhou, Peoples R China
[3] Huazhong Agr Univ, Key Lab Hort Plant Biol, Minist Educ, Wuhan, Peoples R China
[4] Univ Western Australia, Sch Biol Sci, Crawley, WA, Australia
来源
基金
中国国家自然科学基金;
关键词
RNA-seq; proteomics; drought stress; ABA-response element binding factor; AREB1; heat shock protein; HSP; ABIOTIC STRESS; MESSENGER-RNA; SINGLE-CELL; PRIMARY METABOLISM; MULTIPLE LEVELS; OSMOTIC-STRESS; SALT TOLERANCE; FREE PROLINE; GENOME; RICE;
D O I
10.3389/fpls.2023.1282718
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is among the most common abiotic constraints of crop growth, development, and productivity. Integrating different omics approaches offers a possibility for deciphering the metabolic pathways and fundamental mechanisms involved in abiotic stress tolerance. Here, we explored the transcriptional and post-transcriptional changes in drought-stressed tomato plants using transcriptomic and proteomic profiles to determine the molecular dynamics of tomato drought stress responses. We identified 22467 genes and 5507 proteins, among which the expression of 3765 genes and 294 proteins was significantly changed under drought stress. Furthermore, the differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) showed a good correlation (0.743). The results indicated that integrating different omics approaches is promising in exploring the multilayered regulatory mechanisms of plant drought resistance. Gene ontology (GO) and pathway analysis identified several GO terms and pathways related to stress resistance, including response to stress, abiotic stimulus, and oxidative stress. The plant hormone abscisic acid (ABA) plays pivotal roles in response to drought stress, ABA-response element binding factor (AREB) is a key positive regulator of ABA signaling. Moreover, our analysis indicated that drought stress increased the abscisic acid (ABA) content, which activated AREB1 expression to regulate the expression of TAS14, GSH-Px-1, and Hsp, ultimately improving tomato drought resistance. In addition, the yeast one-hybrid assay demonstrated that the AREB1 could bind the Hsp promoter to activate Hsp expression. Thus, this study involved a full-scale analysis of gene and protein expression in drought-stressed tomato, deepening the understanding of the regulatory mechanisms of the essential drought-tolerance genes in tomato.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Comparative physiological and transcriptomic analyses reveal genotype specific response to drought stress in Siberian wildrye (Elymus sibiricus)
    An, Yongping
    Wang, Qian
    Cui, Yannong
    Liu, Xin
    Wang, Ping
    Zhou, Yue
    Kang, Peng
    Chen, Youjun
    Wang, Zhiwei
    Zhou, Qingping
    Wang, Pei
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis
    Brunmeir, Reinhard
    Wu, Jingyi
    Peng, Xu
    Kim, Sun-Yee
    Julien, Sofi G.
    Zhang, Qiongyi
    Xie, Wei
    Xu, Feng
    PLOS GENETICS, 2016, 12 (12):
  • [33] Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato
    Iovieno, Paolo
    Punzo, Paola
    Guida, Gianpiero
    Mistretta, Carmela
    Van Oosten, Michael J.
    Nurcato, Roberta
    Bostan, Hamed
    Colantuono, Chiara
    Costa, Antonello
    Bagnaresi, Paolo
    Chiusano, Maria L.
    Albrizio, Rossella
    Giorio, Pasquale
    Batelli, Giorgia
    Grillo, Stefania
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [34] Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease
    Chin, Mark H.
    Qian, Wei-Jun
    Wang, Haixing
    Petyuk, Vladislav A.
    Bloom, Joshua S.
    Sforza, Daniel M.
    Lacan, Goran
    Liu, Dahai
    Khan, Arshad H.
    Cantor, Rita M.
    Bigelow, Diana J.
    Melega, William P.
    Camp, David G., II
    Smith, Richard D.
    Smith, Desmond J.
    JOURNAL OF PROTEOME RESEARCH, 2008, 7 (02) : 666 - 677
  • [35] Contrasting patterns of selection at Pinus pinaster Ait. drought stress candidate genes as revealed by genetic differentiation analyses
    Eveno, Emmanuelle
    Collada, Carmen
    Guevara, M. Angeles
    Leger, Valerie
    Soto, Alvaro
    Diaz, Luis
    Leger, Patrick
    Gonzalez-Martinez, Santiago C.
    Cervera, M. Teresa
    Plomion, Christophe
    Garnier-Gere, Pauline H.
    MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (02) : 417 - 437
  • [36] Candidate regulators and target genes of drought stress in needles and roots of Norway spruce
    Haas, Julia C.
    Vergara, Alexander
    Serrano, Alonso R.
    Mishra, Sanatkumar
    Hurry, Vaughan
    Street, Nathaniel R.
    TREE PHYSIOLOGY, 2021, 41 (07) : 1230 - 1246
  • [37] Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress
    Zhang, Sheng
    Chen, Fugui
    Peng, Shuming
    Ma, Wujun
    Korpelainen, Helena
    Li, Chunyang
    PROTEOMICS, 2010, 10 (14) : 2661 - 2677
  • [38] A comparative proteomic analysis of tomato leaves in response to waterlogging stress
    Ahsan, Nagib
    Lee, Dong-Gi
    Lee, Sang-Hoon
    Kang, Kyu Young
    Bahk, Jeong Dong
    Choi, Myung Suk
    Lee, In-Jung
    Renaut, Jenny
    Lee, Byung-Hyun
    PHYSIOLOGIA PLANTARUM, 2007, 131 (04) : 555 - 570
  • [39] Comparative Physiological and Proteomic Analyses Reveal the Mechanisms of Brassinolide-Mediated Tolerance to Calcium Nitrate Stress in Tomato
    Zhang, Yi
    Chen, Haoting
    Li, Shuo
    Li, Yang
    Kanwar, Mukesh Kumar
    Li, Bin
    Bai, Longqiang
    Xu, Jin
    Shi, Yu
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [40] Physiological and Proteomic Analyses of Drought Stress Response in Holm Oak Provenances
    Valero-Galvan, Jose
    Gonzalez-Fernandez, Raquel
    Ma Navarro-Cerrillo, Rafael
    Gil-Pelegrin, Eustaquio
    Jorrin-Novo, Jesus V.
    JOURNAL OF PROTEOME RESEARCH, 2013, 12 (11) : 5110 - 5123