Machine learning for fault diagnosis of high-speed train traction systems: A review

被引:10
作者
Wang, Huan [1 ]
Li, Yan-Fu [1 ]
Ren, Jianliang [2 ]
机构
[1] Tsinghua Univ, Dept Ind Engn, Beijing 100084, Peoples R China
[2] Zhibo Lucchini Railway Equipment Co Ltd, Taiyuan 030032, Peoples R China
基金
中国国家自然科学基金;
关键词
high-speed train; traction systems; machine learning; fault diagnosis; DISSOLVED-GAS ANALYSIS; DATA-DRIVEN METHOD; PANTOGRAPH-CATENARY; ARC DETECTION; ROTATING MACHINERY; COMPONENT ANALYSIS; WOLF OPTIMIZER; TRANSFORMER; MOTOR; CIRCUIT;
D O I
10.1007/s42524-023-0256-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-speed trains (HSTs) have the advantages of comfort, efficiency, and convenience and have gradually become the mainstream means of transportation. As the operating scale of HSTs continues to increase, ensuring their safety and reliability has become more imperative. As the core component of HST, the reliability of the traction system has a substantially influence on the train. During the long-term operation of HSTs, the core components of the traction system will inevitably experience different degrees of performance degradation and cause various failures, thus threatening the running safety of the train. Therefore, performing fault monitoring and diagnosis on the traction system of the HST is necessary. In recent years, machine learning has been widely used in various pattern recognition tasks and has demonstrated an excellent performance in traction system fault diagnosis. Machine learning has made considerably advancements in traction system fault diagnosis; however, a comprehensive systematic review is still lacking in this field. This paper primarily aims to review the research and application of machine learning in the field of traction system fault diagnosis and assumes the future development blueprint. First, the structure and function of the HST traction system are briefly introduced. Then, the research and application of machine learning in traction system fault diagnosis are comprehensively and systematically reviewed. Finally, the challenges for accurate fault diagnosis under actual operating conditions are revealed, and the future research trends of machine learning in traction systems are discussed.
引用
收藏
页码:62 / 78
页数:17
相关论文
共 50 条
  • [31] Online Deep Learning for High-Speed Train Traction Motor Temperature Prediction
    Yang, Zhiqiang
    Dong, Honghui
    Man, Jie
    Jia, Limin
    Qin, Yong
    Bi, Jun
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 608 - 622
  • [32] Data Based Fault Diagnosis of Hot Axle for High-Speed Train
    Sun, Lanlan
    Xie, Guo
    Wang, Zhuxin
    Hei, Xinhong
    Qian, Fucai
    Liu, Han
    [J]. 2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 220 - 225
  • [33] Fault diagnosis of high-speed train wheelset bearing based on a lightweight neural network
    Deng F.-Y.
    Ding H.
    Lü H.-Y.
    Hao R.-J.
    Liu Y.-Q.
    [J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2021, 43 (11): : 1482 - 1490
  • [34] Convolutional Neural Network for Fault Diagnosis of High-Speed Train Bogie
    Huang, Changhe
    Qin, Na
    Huang, Deqing
    Liang, Kaiwei
    [J]. PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 4937 - 4941
  • [35] An Adaptive Multisensor Fault Diagnosis Method for High-Speed Train Bogie
    Man, Jie
    Dong, Honghui
    Jia, Limin
    Qin, Yong
    Zhang, Jun
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 6292 - 6306
  • [36] A Fault Diagnosis and Visualization Method for High-Speed Train Based on Edge and Cloud Collaboration
    Zhang, Kunlin
    Huang, Wei
    Hou, Xiaoyu
    Xu, Jihui
    Su, Ruidan
    Xu, Huaiyu
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 16
  • [37] GraphFL: Graph Federated Learning for Fault Localization of Multirailway High-Speed Train Suspension Systems
    Jia, Xinming
    Qin, Na
    Huang, Deqing
    Du, Jiahao
    Zhang, Yiming
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [38] Optimization analysis on high-speed train traction performance
    Locomotive and Vehicle Department, The Third Railway Survey and Design Institute Group Corporation, Tianjin 300251, China
    不详
    [J]. Tiedao Xuebao, 5 (14-18): : 14 - 18
  • [39] Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives
    Chen, Hongtian
    Jiang, Bin
    Ding, Steven X.
    Huang, Biao
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 1700 - 1716
  • [40] Methods for fault diagnosis of high-speed railways: A review
    Zang, Yu
    Wei Shangguan
    Cai, Baigen
    Wang, Huashen
    Pecht, Michael G.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2019, 233 (05) : 908 - 922