A Deep Learning-Based Efficient Firearms Monitoring Technique for Building Secure Smart Cities

被引:3
|
作者
Chatterjee, Rajdeep [1 ]
Chatterjee, Ankita [2 ]
Pradhan, Manas Ranjan [3 ]
Acharya, Biswaranjan [4 ]
Choudhury, Tanupriya [5 ,6 ]
机构
[1] Kalinga Inst Ind Technol Deemed Univ, Sch Comp Engn, Bhubaneswar 751024, Odisha, India
[2] Amygdala AI, Khorda 751024, Odisha, India
[3] Skyline Univ Coll, Sch Comp, Sharjah, U Arab Emirates
[4] Marwadi Univ, Dept Comp Engn Artificial Intelligence & Big Data, Rajkot 360003, Gujarat, India
[5] Univ Petr & Energy Studies UPES, Sch Comp Sci, Informat Cluster, Dehra Dun 248007, Uttarakhand, India
[6] Graph Era Hill Univ, CSE Dept, Dehra Dun 248002, Uttarakhand, India
关键词
Feature extraction; Deep learning; Smart cities; Law enforcement; Videos; Surveillance; Computer vision; deep learning; ensemble; firearms; smart cities;
D O I
10.1109/ACCESS.2023.3266514
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Violence, in any form, is a disgrace to our civilized world. Nevertheless, even in modern times, violence is an integral part of our society and causes the deaths of many innocent lives. One of the conventional means of violence is using a firearm. Firearm-related deaths are currently a global phenomenon. It is a threat to society and a challenge to law enforcement agencies. A significant portion of such crimes happen in semi-urban areas or cities. Governments and private organizations use CCTV-based surveillance extensively today for prevention and monitoring. However, human-based monitoring requires a significant amount of person-hours as a resource and is prone to mistakes. On the other hand, automated smart surveillance for violent activities is more suitable for scale and reliability. The paper's main focus is to showcase that deep learning-based techniques can be used in combination to detect firearms (particularly guns). This paper uses different detection techniques, such as Faster Region-Based Convolutional Neural Networks (Faster RCNN) and the latest EfficientDet-based architectures for detecting guns and human faces. An ensemble (stacked) scheme has improved the detection performance to identify human faces and guns at the post-processing level using Non-Maximum Suppression, Non-Maximum Weighted, and Weighted Box Fusion techniques. This paper has empirically discussed the comparative results of various detection techniques and their ensembles. It helps the police gather quick intelligence about the incident and take preventive measures at the earliest. Also, the same technique can be used to identify social media videos for gun-based content detection. Here, the Weighted Box Fusion-based Ensemble Detection Scheme provides mean average precisions 77.02%, 16.40%, 29.73% for the mAP0.5, mAP0.75 and mAP[0.500.95], respectively. The results achieve the best performance among all the experimented alternatives. The model has been rigorously tested with unknown test images and movie clips. The obtained ensemble schemes are satisfactory and consistently improve over primary models.
引用
收藏
页码:37515 / 37524
页数:10
相关论文
共 50 条
  • [41] Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities
    Alghamdi, Ahmed
    Hammad, Mohamed
    Ugail, Hassan
    Abdel-Raheem, Asmaa
    Muhammad, Khan
    Khalifa, Hany S.
    Abd El-Latif, Ahmed A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 14913 - 14934
  • [42] Leveraging patent classification based on deep learning: The case study on smart cities and industrial Internet of Things
    Li, Munan
    Wang, Liang
    JOURNAL OF INFORMETRICS, 2025, 19 (01)
  • [43] An optimized framework for implementation of smart waste collection and management system in smart cities using IoT based deep learning approach
    P. William
    Jaikumar M. Patil
    Sunita Panda
    Anita Venugopal
    Pellakuri Vidyullatha
    Nellore Manoj Kumar
    Aman Jandwani
    International Journal of Information Technology, 2024, 16 (8) : 5033 - 5040
  • [44] A review on deep learning-based structural health monitoring of civil infrastructures
    Ye, X. W.
    Jin, T.
    Yun, C. B.
    SMART STRUCTURES AND SYSTEMS, 2019, 24 (05) : 567 - 585
  • [45] Deep Learning-Based Computer Vision for Health Monitoring in Civil Engineering
    Fang C.
    Yu S.
    Li Y.
    Jia W.
    Yang P.
    Yang X.
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (02): : 213 - 222
  • [46] Deep learning-based spike sorting: a survey
    Meyer, Luca M.
    Zamani, Majid
    Rokai, Janos
    Demosthenous, Andreas
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (06)
  • [47] Secure deep learning-based energy efficient routing with intrusion detection system for wireless sensor networks
    Sakthimohan M.
    Deny J.
    Elizabeth Rani G.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04) : 8587 - 8603
  • [48] RSSI and Machine Learning-Based Indoor Localization Systems for Smart Cities
    Rathnayake, R. M. M. R.
    Maduranga, Madduma Wellalage Pasan
    Tilwari, Valmik
    Dissanayake, Maheshi B.
    ENG, 2023, 4 (02): : 1468 - 1494
  • [49] Deep Learning Based Pedestrian Detection at Distance in Smart Cities
    Dinakaran, Ranjith K.
    Easom, Philip
    Bouridane, Ahmed
    Zhang, Li
    Jiang, Richard
    Mehboob, Fozia
    Rauf, Abdul
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, 2020, 1038 : 588 - 593
  • [50] Deep learning-based classification models for beehive monitoring
    Berkaya, Selcan Kaplan
    Gunal, Efnan Sora
    Gunal, Serkan
    ECOLOGICAL INFORMATICS, 2021, 64