Meta-Analysis of Human Cancer Single-Cell RNA-Seq Datasets Using the IMMUcan Database

被引:29
作者
Camps, Jordi [1 ]
Noel, Floriane [2 ]
Liechti, Robin [3 ]
Massenet-Regad, Lucile [2 ,4 ]
Rigade, Sidwell [2 ]
Gotz, Lou [3 ]
Hoffmann, Caroline [5 ]
Amblard, Elise [2 ,6 ]
Saichi, Melissa [2 ]
Ibrahim, Mahmoud M. [7 ]
Pollard, Jack [8 ]
Medvedovic, Jasna [2 ]
Roider, Helge G. [9 ]
Soumelis, Vassili [2 ,10 ,11 ]
机构
[1] Bayer AG, Biomed Data Sci Res & Early Dev Oncol, Berlin, Germany
[2] Univ Paris, Inst Rech St Louis, INSERM U976, Paris, France
[3] SIB Swiss Inst Bioinformat, Vital IT Grp, Lausanne, Switzerland
[4] Univ Paris Saclay, St Aubin, France
[5] PSL Univ, Inst Curie, Dept Surg Oncol, INSERM Res Unit U932, Paris, France
[6] Univ Paris, Ctr Rech Interdisciplinaires, Paris, France
[7] Bayer AG, Biomed Data Sci Res & Early Dev Premed, Wuppertal, Germany
[8] Sanofi Res & Dev, Cambridge, MA USA
[9] Bayer AG, Oncol Precis Med Res & Early Dev Oncol, Berlin, Germany
[10] Hop St Louis, Assistance Publ Hop Paris AP HP, Lab Immunol, Paris, France
[11] Owkin, Paris, France
关键词
TUMOR;
D O I
10.1158/0008-5472.CAN-22-0074
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type-specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprec-edented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies.
引用
收藏
页码:363 / 373
页数:11
相关论文
共 35 条
[1]   SCPortalen: human and mouse single-cell centric database [J].
Abugessaisa, Imad ;
Noguchi, Shuhei ;
Bottcher, Michael ;
Hasegawa, Akira ;
Kouno, Tsukasa ;
Kato, Sachi ;
Tada, Yuhki ;
Ura, Hiroki ;
Abe, Kuniya ;
Shin, Jay W. ;
Plessy, Charles ;
Carninci, Piero ;
Kasukawa, Takeya .
NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) :D781-D787
[2]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[3]   Comparison of visualization tools for single-cell RNAseq data [J].
Cakir, Batuhan ;
Prete, Martin ;
Huang, Ni ;
van Dongen, Stijn ;
Pir, Pinar ;
Kiselev, Vladimir Yu .
NAR GENOMICS AND BIOINFORMATICS, 2020, 2 (03)
[4]   Fc-Optimized Anti-CCR8 Antibody Depletes Regulatory T Cells in Human Tumor Models [J].
Campbell, Joseph R. ;
McDonald, Bryan R. ;
Mesko, Paul B. ;
Siemers, Nathan O. ;
Singh, Priti B. ;
Selby, Mark ;
Sproul, Tim W. ;
Korman, Alan J. ;
Vlach, Logan M. ;
Houser, Jeff ;
Sambanthamoorthy, Sharmila ;
Lu, Kai ;
Hatcher, Sandra, V ;
Lohre, Jack ;
Jain, Renu ;
Lan, Ruth Y. .
CANCER RESEARCH, 2021, 81 (11) :2983-2994
[5]   scRNASeqDB: A Database for RNA-Seq Based Gene Expression Profiles in Human Single Cells [J].
Cao, Yuan ;
Zhu, Junjie ;
Jia, Peilin ;
Zhao, Zhongming .
GENES, 2017, 8 (12)
[6]   Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench [J].
Chazarra-Gil, Ruben ;
van Dongen, Stijn ;
Kiselev, Vladimir Yu ;
Hemberg, Martin .
NUCLEIC ACIDS RESEARCH, 2021, 49 (07)
[7]   CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing [J].
de Kanter, Jurrian K. ;
Lijnzaad, Philip ;
Candelli, Tito ;
Margaritis, Thanasis ;
Holstege, Frank C. P. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (16)
[8]   PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data [J].
Franzen, Oscar ;
Gan, Li-Ming ;
Bjorkegren, Johan L. M. .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2019,
[9]   Guidelines for reporting single-cell RNA-seq experiments [J].
Fullgrabe, Anja ;
George, Nancy ;
Green, Matthew ;
Nejad, Parisa ;
Aronow, Bruce ;
Fexova, Silvie Korena ;
Fischer, Clay ;
Freeberg, Mallory Ann ;
Huerta, Laura ;
Morrison, Norman ;
Scheuermann, Richard H. ;
Taylor, Deanne ;
Vasilevsky, Nicole ;
Clarke, Laura ;
Gehlenborg, Nils ;
Kent, Jim ;
Marioni, John ;
Teichmann, Sarah ;
Brazma, Alvis ;
Papatheodorou, Irene .
NATURE BIOTECHNOLOGY, 2020, 38 (12) :1384-1386
[10]   Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes [J].
Gao, Ruli ;
Bai, Shanshan ;
Henderson, Ying C. ;
Lin, Yiyun ;
Schalck, Aislyn ;
Yan, Yun ;
Kumar, Tapsi ;
Hu, Min ;
Sei, Emi ;
Davis, Alexander ;
Wang, Fang ;
Shaitelman, Simona F. ;
Wang, Jennifer Rui ;
Chen, Ken ;
Moulder, Stacy ;
Lai, Stephen Y. ;
Navin, Nicholas E. .
NATURE BIOTECHNOLOGY, 2021, 39 (05) :599-608