Graph-Based Semi-Supervised Learning: A Comprehensive Review

被引:148
|
作者
Song, Zixing [1 ]
Yang, Xiangli [2 ]
Xu, Zenglin [3 ,4 ]
King, Irwin [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, SMILE Lab, Chengdu 611731, Peoples R China
[3] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518066, Peoples R China
关键词
Taxonomy; Semisupervised learning; Manifolds; Codes; Training; Prediction algorithms; Image color analysis; Graph embedding; graph representation learning; graph-based semi-supervised learning (GSSL); semi-supervised learning (SSL); LABEL PROPAGATION; MANIFOLD REGULARIZATION; CONSTRUCTION; LAPLACIAN; FRAMEWORK;
D O I
10.1109/TNNLS.2022.3155478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning (SSL) has tremendous value in practice due to the utilization of both labeled and unlabelled data. An essential class of SSL methods, referred to as graph-based semi-supervised learning (GSSL) methods in the literature, is to first represent each sample as a node in an affinity graph, and then, the label information of unlabeled samples can be inferred based on the structure of the constructed graph. GSSL methods have demonstrated their advantages in various domains due to their uniqueness of structure, the universality of applications, and their scalability to large-scale data. Focusing on GSSL methods only, this work aims to provide both researchers and practitioners with a solid and systematic understanding of relevant advances as well as the underlying connections among them. The concentration on one class of SSL makes this article distinct from recent surveys that cover a more general and broader picture of SSL methods yet often neglect the fundamental understanding of GSSL methods. In particular, a significant contribution of this article lies in a newly generalized taxonomy for GSSL under the unified framework, with the most up-to-date references and valuable resources such as codes, datasets, and applications. Furthermore, we present several potential research directions as future work with our insights into this rapidly growing field.
引用
收藏
页码:8174 / 8194
页数:21
相关论文
共 50 条
  • [31] Safety-aware Graph-based Semi-Supervised Learning
    Gan, Haitao
    Li, Zhenhua
    Wu, Wei
    Luo, Zhizeng
    Huang, Rui
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 107 : 243 - 254
  • [32] Graph-based Semi-Supervised & Active Learning for Edge Flows
    Jia, Junteng
    Schaub, Michael T.
    Segarra, Santiago
    Benson, Austin R.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 761 - 771
  • [33] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [34] Image colourisation using graph-based semi-supervised learning
    Liu, B. -B.
    Lu, Z. -M.
    IET IMAGE PROCESSING, 2009, 3 (03) : 115 - 120
  • [35] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065
  • [36] A Sampling Theory Perspective of Graph-Based Semi-Supervised Learning
    Anis, Aamir
    El Gamal, Aly
    Avestimehr, A. Salman
    Ortega, Antonio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2322 - 2342
  • [37] Model Change Active Learning in Graph-Based Semi-supervised Learning
    Miller, Kevin S.
    Bertozzi, Andrea L.
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1270 - 1298
  • [38] Analysis of label noise in graph-based semi-supervised learning
    de Aquino Afonso, Bruno Klaus
    Berton, Lilian
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1127 - 1134
  • [39] A comparison of graph-based semi-supervised learning for data augmentation
    de Oliveira, Willian Dihanster G.
    Penatti, Otavio A. B.
    Berton, Lilian
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 264 - 271
  • [40] Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning
    Wan, Sheng
    Pan, Shirui
    Yang, Jian
    Gong, Chen
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10049 - 10057