Artificial intelligence-assisted diagnosis of congenital heart disease and associated pulmonary arterial hypertension from chest radiographs: A multi-reader multi-case study

被引:2
作者
Han, Pei-Lun [1 ,2 ]
Jiang, Lei [3 ]
Cheng, Jun-Long [3 ]
Shi, Ke [1 ,2 ]
Huang, Shan [1 ,2 ]
Jiang, Yu [1 ,2 ]
Jiang, Li [1 ,2 ]
Xia, Qing [4 ]
Li, Yi-Yue [1 ,2 ]
Zhu, Min [3 ]
Li, Kang [1 ,2 ,5 ,6 ]
Yang, Zhi-Gang [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Radiol, 37 Guoxue Xiang, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, Chengdu, Peoples R China
[3] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
[4] SenseTime Res, Beijing, Peoples R China
[5] Sichuan Univ, MedX Ctr Informat, Chengdu, Peoples R China
[6] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
关键词
Congenital heart disease; Pulmonary arterial hypertension; Radiography; Artificial intelligence; Radiologists; Multi-reader multi -case study;
D O I
10.1016/j.ejrad.2023.111277
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: To explore the possibility of automatic diagnosis of congenital heart disease (CHD) and pulmonary arterial hypertension associated with CHD (PAH-CHD) from chest radiographs using artificial intelligence (AI) technology and to evaluate whether AI assistance could improve clinical diagnostic accuracy. Materials and Methods: A total of 3255 frontal preoperative chest radiographs (1174 CHD of any type and 2081 non-CHD) were retrospectively obtained. In this study, we adopted ResNet18 pretrained with the ImageNet database to establish diagnostic models. Radiologists diagnosed CHD/PAH-CHD from 330/165 chest radiographs twice: the first time, 50% of the images were accompanied by AI-based classification; after a month, the remaining 50% were accompanied by AI-based classification. Diagnostic results were compared between the radiologists and AI models, and between radiologists with and without AI assistance. Results: The AI model achieved an average area under the receiver operating characteristic curve (AUC) of 0.948 (sensitivity: 0.970, specificity: 0.982) for CHD diagnoses and an AUC of 0.778 (sensitivity: 0.632, specificity: 0.925) for identifying PAH-CHD. In the 330 balanced (165 CHD and 165 non-CHD) testing set, AI achieved higher AUCs than all 5 radiologists in the identification of CHD (0.670-0.858) and PAH-CHD (0.610-0.688). With AI assistance, the mean +/- standard error AUC of radiologists was significantly improved for CHD (Delta AUC + 0.096, 95 % CI: 0.001-0.190; P = 0.048) and PAH-CHD (Delta AUC + 0.066, 95 % CI: 0.010-0.122; P = 0.031) diagnosis. Conclusion: Chest radiograph-based AI models can detect CHD and PAH-CHD automatically. AI assistance improved radiologists' diagnostic accuracy, which may facilitate a timely initial diagnosis of CHD and PAH-CHD.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Pediatric Pulmonary Hypertension Guidelines From the American Heart Association and American Thoracic Society [J].
Abman, Steven H. ;
Hansmann, Georg ;
Archer, Stephen L. ;
Ivy, D. Dunbar ;
Adatia, Ian ;
Chung, Wendy K. ;
Hanna, Brian D. ;
Rosenzweig, Erika B. ;
Raj, J. Usha ;
Cornfield, David ;
Stenmark, Kurt R. ;
Steinhorn, Robin ;
Theobaud, Bernard ;
Fineman, Jeffrey R. ;
Kuehne, Titus ;
Feinstein, Jeffrey A. ;
Friedberg, Mark K. ;
Earing, Michael ;
Barst, Robyn J. ;
Keller, Roberta L. ;
Kinsella, John P. ;
Mullen, Mary ;
Deterding, Robin ;
Kulik, Thomas ;
Mallory, George ;
Humpl, Tilman ;
Wessel, David L. .
CIRCULATION, 2015, 132 (21) :2037-2099
[2]   Echocardiographic assessment of pulmonary hypertension: A guideline protocol from the British Society of Echocardiography [J].
Augustine D.X. ;
Coates-Bradshaw L.D. ;
Willis J. ;
Harkness A. ;
Ring L. ;
Grapsa J. ;
Coghlan G. ;
Kaye N. ;
Oxborough D. ;
Robinson S. ;
Sandoval J. ;
Rana B.S. ;
Siva A. ;
Nihoyannopoulos P. ;
Howard L.S. ;
Fox K. ;
Bhattacharyya S. ;
Sharma V. ;
Steeds R.P. ;
Mathew T. .
Echo Research & Practice, 2018, 5 (3) :G11-G24
[3]   Pulmonary arterial hypertension in adult congenital heart disease [J].
Brida, Margarita ;
Gatzoulis, Michael A. .
HEART, 2018, 104 (19) :1568-1574
[4]   Imaging and surgical management of congenital heart diseases [J].
Caro-Dominguez, Pablo ;
Secinaro, Aurelio ;
Valverde, Israel ;
Fouilloux, Virginie .
PEDIATRIC RADIOLOGY, 2023, 53 (04) :677-694
[5]   Artificial intelligence, fetal echocardiography, and congenital heart disease [J].
Day, Thomas G. ;
Kainz, Bernhard ;
Hajnal, Jo ;
Razavi, Reza ;
Simpson, John M. .
PRENATAL DIAGNOSIS, 2021, 41 (06) :733-742
[6]   Multi-Reader Multi-Case Studies Using the Area under the Receiver Operator Characteristic Curve as a Measure of Diagnostic Accuracy: Systematic Review with a Focus on Quality of Data Reporting [J].
Dendumrongsup, Thaworn ;
Plumb, Andrew A. ;
Halligan, Steve ;
Fanshawe, Thomas R. ;
Altman, Douglas G. ;
Mallett, Susan .
PLOS ONE, 2014, 9 (12)
[7]   Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review [J].
Dey, Damini ;
Slomka, Piotr J. ;
Leeson, Paul ;
Comaniciu, Dorin ;
Shrestha, Sirish ;
Sengupta, Partho P. ;
Marwick, Thomas H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) :1317-1335
[8]   Assessment of Convolutional Neural Networks for Automated Classification of Chest Radiographs [J].
Dunnmon, Jared A. ;
Yi, Darvin ;
Langlotz, Curtis P. ;
Re, Christopher ;
Rubin, Daniel L. ;
Lungren, Matthew P. .
RADIOLOGY, 2019, 290 (02) :537-544
[9]   Quasi-continuous and discrete confidence rating scales for observer performance studies: Effects on ROC analysis [J].
Hadjiiski, Lubomir ;
Chan, Heang-Ping ;
Sahiner, Berkman ;
Helvie, Mark A. ;
Roubidoux, Marilyn A. .
ACADEMIC RADIOLOGY, 2007, 14 (01) :38-48
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778