The Gleason's problem on normal weight general function spaces in the unit ball of Cn

被引:0
作者
Guo, Yu-ting [1 ]
Zhang, Xue-jun [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Changsha 410006, Peoples R China
基金
中国国家自然科学基金;
关键词
Gleason's problem; solvability; F(p; mu; s); space; integral operator; BERGMAN TYPE OPERATOR; RUDIN TYPE OPERATORS; HOLOMORPHIC-FUNCTIONS; EQUIVALENT NORMS; F(P; S);
D O I
10.1007/s11766-023-4840-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first discuss the boundedness of certain integral operator T-t on the normal weight general function space F(p, mu, s) in the unit ball B-n of C-n. As an application of this operator, we prove that the Gleason's problem is solvable on F(p, mu, s).
引用
收藏
页码:604 / 613
页数:10
相关论文
共 34 条
[11]   Singular Integral Operators with Bergman-Besov Kernels on the Ball [J].
Kaptanoglu, H. Turgay ;
Ureyen, A. Ersin .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2019, 91 (04)
[12]  
Kohr M, 2005, STUD U BABES-BOL MAT, V50, P129
[13]   Bergman type operator on spaces of holomorphic functions in the unit ball of Cn [J].
Li, Shenlian .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
[14]   THE EQUIVALENT CHARACTERIZATION OF F(p, q, s) SPACE ON BOUNDED SYMMETRIC DOMAINS OF Cn [J].
Li, Shenlian ;
Zhang, Xuejun ;
Xu, Si .
ACTA MATHEMATICA SCIENTIA, 2017, 37 (06) :1791-1802
[15]  
Li SL., 2017, Chin J Conte Math, V38, P303
[16]   On an integral-type operator from a weighted-type space to F(p,q,s) on the unit ball [J].
Liang, Yu-Xia .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (02) :282-291
[17]   Sharp Forelli-Rudin estimates and the norm of the Bergman projection [J].
Liu, Congwen .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (02) :255-277
[18]  
Ortega JM., 1992, Complex Var, V20, P157, DOI 10.1080/17476939208814597
[19]  
Ren GB, 1997, CHINESE ANN MATH B, V18, P265
[20]   Gleason's problem in weighted Bergman space an egg domains [J].
Ren, GB ;
Shi, JH .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (03) :225-231