The Gleason's problem on normal weight general function spaces in the unit ball of Cn

被引:0
作者
Guo, Yu-ting [1 ]
Zhang, Xue-jun [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Stat, Changsha 410006, Peoples R China
基金
中国国家自然科学基金;
关键词
Gleason's problem; solvability; F(p; mu; s); space; integral operator; BERGMAN TYPE OPERATOR; RUDIN TYPE OPERATORS; HOLOMORPHIC-FUNCTIONS; EQUIVALENT NORMS; F(P; S);
D O I
10.1007/s11766-023-4840-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first discuss the boundedness of certain integral operator T-t on the normal weight general function space F(p, mu, s) in the unit ball B-n of C-n. As an application of this operator, we prove that the Gleason's problem is solvable on F(p, mu, s).
引用
收藏
页码:604 / 613
页数:10
相关论文
共 34 条
[1]   Gleason's problem and Schur multipliers in the multivariable quaternionic setting [J].
Abu-Ghanem, Khaled ;
Alpay, Daniel ;
Colombo, Fabrizio ;
Sabadini, Irene .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (02) :1083-1096
[2]  
[Anonymous], 1996, Ann Acad Sci Fenn Math Diss
[3]   An equivalence to the Gleason problem [J].
Carlsson, Linus .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :373-378
[4]   Composition operators and Gleason's problem on weighted Fock spaces [J].
Cheng, Shuqing ;
Dai, Jineng .
ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (01)
[5]  
Daniel A., 2018, Israel J of Math, V226, P1
[6]  
Doubtsov E., 1998, Complex Var, V36, P27
[7]   PROJECTIONS ON SPACES OF HOLOMORPHIC FUNCTIONS IN BALLS [J].
FORELLI, F ;
RUDIN, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 24 (06) :593-602
[8]  
GLEASON AM, 1964, J MATH MECH, V13, P125
[9]   The Gleason's problem for some polyharmonic and hyperbolic harmonic function spaces [J].
Hu Zhangjian ;
Tang Xiaomin .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (08) :1128-1145
[10]   Composition operators from Bα to F(p, q, s) [J].
Jiang, LJ ;
He, YZ .
ACTA MATHEMATICA SCIENTIA, 2003, 23 (02) :252-260