The journey towards clinical adoption of MALDI-MS-based imaging proteomics: from current challenges to future expectations

被引:3
作者
Piga, Isabella [1 ]
Magni, Fulvio [1 ]
Smith, Andrew [1 ]
机构
[1] Univ Milano Bicocca, Dept Med & Surg, Prote & Metabol Unit, I-20854 Vedano Al Lambro, Italy
关键词
clinical proteomics; machine learning; MALDI-MSI; mass spectrometry; molecular pathology; proteomics; spatial omics; DESORPTION/IONIZATION MASS-SPECTROMETRY; PRINCIPAL COMPONENT ANALYSIS; DIGITAL PATHOLOGY; ROUTINE; PROTEINS;
D O I
10.1002/1873-3468.14795
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Among the spatial omics techniques available, mass spectrometry imaging (MSI) represents one of the most promising owing to its capability to map the distribution of hundreds of peptides and proteins, as well as other classes of biomolecules, within a complex sample background in a multiplexed and relatively high-throughput manner. In particular, matrix-assisted laser desorption/ionisation (MALDI-MSI) has come to the fore and established itself as the most widely used technique in clinical research. However, the march of this technique towards clinical utility has been hindered by issues related to method reproducibility, appropriate biocomputational tools, and data storage. Notwithstanding these challenges, significant progress has been achieved in recent years regarding multiple facets of the technology and has rendered it more suitable for a possible clinical role. As such, there is now more robust and extensive evidence to suggest that the technology has the potential to support clinical decision-making processes under appropriate circumstances. In this review, we will discuss some of the recent developments that have facilitated this progress and outline some of the more promising clinical proteomics applications which have been developed with a clear goal towards implementation in mind.
引用
收藏
页码:621 / 634
页数:14
相关论文
共 92 条
  • [1] massNet: integrated processing and classification of spatially resolved mass spectrometry data using deep learning for rapid tumor delineation
    Abdelmoula, Walid M.
    Stopka, Sylwia A.
    Randall, Elizabeth C.
    Regan, Michael
    Agar, Jeffrey N.
    Sarkaria, Jann N.
    Wells, William M.
    Kapur, Tina
    Agar, Nathalie Y. R.
    [J]. BIOINFORMATICS, 2022, 38 (07) : 2015 - 2021
  • [2] Peak learning of mass spectrometry imaging data using artificial neural networks
    Abdelmoula, Walid M.
    Lopez, Begona Gimenez-Cassina
    Randall, Elizabeth C.
    Kapur, Tina
    Sarkaria, Jann N.
    White, Forest M.
    Agar, Jeffrey N.
    Wells, William M.
    Agar, Nathalie Y. R.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Interactive Visual Exploration of 3D Mass Spectrometry Imaging Data Using Hierarchical Stochastic Neighbor Embedding Reveals Spatiomolecular Structures at Full Data Resolution
    Abdelmoula, Walid M.
    Pezzotti, Nicola
    Holt, Thomas
    Dijkstra, Jouke
    Vilanova, Anna
    McDonnell, Liam A.
    Lelieveldt, Boudewijn P. F.
    [J]. JOURNAL OF PROTEOME RESEARCH, 2018, 17 (03) : 1054 - 1064
  • [4] Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data
    Abdelmoula, Walid M.
    Balluff, Benjamin
    Englert, Sonja
    Dijkstra, Jouke
    Reinders, Marcel J. T.
    Walch, Axel
    McDonnell, Liam A.
    Lelieveldt, Boudewijn P. F.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) : 12244 - 12249
  • [5] Automatic Generic Registration of Mass Spectrometry Imaging Data to Histology Using Nonlinear Stochastic Embedding
    Abdelmoula, Walid M.
    Skraskova, Karolina
    Balluff, Benjamin
    Carreira, Ricardo J.
    Tolner, Else A.
    Lelieveldt, Boudewijn P. F.
    van der Maaten, Laurens
    Morreau, Hans
    van den Maagdenberg, Arn M. J. M.
    Heeren, Ron M. A.
    McDonnell, Liam A.
    Dijkstra, Jouke
    [J]. ANALYTICAL CHEMISTRY, 2014, 86 (18) : 9204 - 9211
  • [6] Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association
    Abels, Esther
    Pantanowitz, Liron
    Aeffner, Famke
    Zarella, Mark D.
    van der Laak, Jeroen
    Bui, Marilyn M.
    Vemuri, Venkata N. P.
    Parwani, Anil V.
    Gibbs, Jeff
    Agosto-Arroyo, Emmanuel
    Beck, Andrew H.
    Kozlowski, Cleopatra
    [J]. JOURNAL OF PATHOLOGY, 2019, 249 (03) : 286 - 294
  • [7] Selective profiling of proteins in lung cancer cells from fine-needle aspirates by matrix-assisted laser desorption ionization time-of-flight mass spectrometry
    Amann, Joseph M.
    Chaurand, Pierre
    Gonzalez, Adriana
    Mobley, James A.
    Massion, Pierre P.
    Carbone, David P.
    Caprioli, Richard M.
    [J]. CLINICAL CANCER RESEARCH, 2006, 12 (17) : 5142 - 5150
  • [8] Spatial N-glycomics of the human aortic valve in development and pediatric endstage congenital aortic valve stenosis
    Angel, Peggi M.
    Drake, Richard R.
    Park, Yeonhee
    Clift, Cassandra L.
    West, Connor
    Berkhiser, Savanna
    Hardiman, Gary
    Mehta, Anand S.
    Bichell, David P.
    Su, Yan Ru
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2021, 154 : 6 - 20
  • [9] Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging
    Baker, Teesha C.
    Han, Jun
    Borchers, Christoph H.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2017, 43 : 62 - 69
  • [10] Integrative Clustering in Mass Spectrometry Imaging for Enhanced Patient Stratification
    Balluff, Benjamin
    Buck, Achim
    Martin-Lorenzo, Marta
    Dewez, Frederic
    Langer, Rupert
    McDonnell, Liam A.
    Walch, Axel
    Heeren, Ron M. A.
    [J]. PROTEOMICS CLINICAL APPLICATIONS, 2019, 13 (01)