SENTIMENTAL ANALYSIS OF COVID-19 TWITTER DATA USING DEEP LEARNING AND MACHINE LEARNING MODELS

被引:2
作者
Darad, Simran [1 ]
Krishnan, Sridhar [2 ]
机构
[1] Toronto Metropolitan Univ, Data Sci & Analyt, Toronto, ON, Canada
[2] Toronto Metropolitan Univ, Dept Elect Comp & Biomed Engn, Toronto, ON, Canada
来源
INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA | 2023年 / 29期
关键词
COVID-19; coronavirus; Twitter; tweets; sentiment analysis; tweepy; text classification;
D O I
10.17163/ings.n29.2023.10
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The novel coronavirus disease (COVID-19) is an on-going pandemic with large global attention. However, spreading fake news on social media sites like Twit-ter is creating unnecessary anxiety and panic among people towards this disease. In this paper, we ap-plied machine learning (ML) techniques to predict the sentiment of the people using social media such as Twitter during the COVID-19 peak in April 2021. The data contains tweets collected on the dates be-tween 16 April 2021 and 26 April 2021 where the text of the tweets has been labelled by training the models with an already labelled dataset of corona virus tweets as positive, negative, and neutral. Senti-ment analysis was conducted by a deep learning model known as Bidirectional Encoder Representations from Transformers (BERT) and various ML models for text analysis and performance which were then com-pared among each other. ML models used were Naive Bayes, Logistic Regression, Random Forest, Support Vector Machines, Stochastic Gradient Descent and Extreme Gradient Boosting. Accuracy for every sen-timent was separately calculated. The classification accuracies of all the ML models produced were 66.4%, 77.7%, 74.5%, 74.7%, 78.6%, and 75.5%, respectively and BERT model produced 84.2 %. Each sentiment -classified model has accuracy around or above 75%, which is a quite significant value in text mining algo-rithms. We could infer that most people tweeting are taking positive and neutral approaches.
引用
收藏
页码:108 / 116
页数:9
相关论文
共 50 条
  • [1] Sentimental Analysis of COVID-19 Tweets Using Deep Learning Models
    Chintalapudi, Nalini
    Battineni, Gopi
    Amenta, Francesco
    INFECTIOUS DISEASE REPORTS, 2021, 13 (02) : 329 - 339
  • [2] Sentiment Analysis Using Machine Learning and Deep Learning on Covid 19 Vaccine Twitter Data with Hadoop MapReduce
    Kul, Seda
    Sayar, Ahmet
    6TH INTERNATIONAL CONFERENCE ON SMART CITY APPLICATIONS, 2022, 393 : 859 - 868
  • [3] Twitter People's Opinions Analysis During Covid-19 Quarantine Using Machine Learning and Deep Learning Models
    Alotaibi, Wafa
    Alomary, Faye
    Mokni, Raouia
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 1013 - 1024
  • [4] Sentiment analysis of COVID-19 related social distancing using twitter data based on deep learning
    Dang, Lanxue
    Wang, Chunyu
    Tsou, Ming-Hsiang
    Hou, Yan-e
    Han, Hongyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 32587 - 32612
  • [5] Arabic Sentiment Analysis using Deep Learning for COVID-19 Twitter Data
    Alhumoud, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (09): : 132 - 138
  • [6] Machine Learning Approach for COVID-19 Detection on Twitter
    Amin, Samina
    Uddin, M. Irfan
    Al-Baity, Heyam H.
    Zeb, M. Ali
    Khan, M. Abrar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (02): : 2231 - 2247
  • [7] Deep Learning Model for COVID-19 Sentiment Analysis on Twitter
    Contreras Hernandez, Salvador
    Tzili Cruz, Maria Patricia
    Espinola Sanchez, Jose Martin
    Perez Tzili, Angelica
    NEW GENERATION COMPUTING, 2023, 41 (02) : 189 - 212
  • [8] Epidemic Prediction using Machine Learning and Deep Learning Models on COVID-19 Data
    Mohanraj, G.
    Mohanraj, V
    Marimuthu, M.
    Sathiyamoorthi, V
    Luhach, Ashish Kr
    Kumar, Sandeep
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2023, 35 (03) : 377 - 393
  • [9] Sentiment analysis of COVID-19 related social distancing using twitter data based on deep learning
    Lanxue Dang
    Chunyu Wang
    Ming-Hsiang Tsou
    Yan-e Hou
    Hongyu Han
    Multimedia Tools and Applications, 2024, 83 : 32587 - 32612
  • [10] Optimal Machine Learning Driven Sentiment Analysis on COVID-19 Twitter Data
    Fakieh, Bahjat
    AL-Ghamdi, Abdullah S. AL-Malaise
    Saleem, Farrukh
    Ragab, Mahmoud
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 81 - 97