Thermal shock fracture analysis of auxetic honeycomb layer based on non-Fourier heat conduction

被引:18
作者
Hu, J. S. [1 ,2 ]
Wang, B. L. [1 ]
Hirakata, H. [2 ]
Wang, K. F. [1 ]
机构
[1] Harbin Inst Technol, Shenzhen Campus, Harbin 150001, Peoples R China
[2] Kyoto Univ, Dept Mech Engn & Sci, Kyoto daigaku Katsura,Nishikyo ku, Kyoto 6158540, Japan
基金
中国国家自然科学基金;
关键词
Non -Fourier effect; Auxetic honeycomb layer; Thermal shock fracture; Critical temperature; NEGATIVE-POISSONS-RATIO; REENTRANT FOAM MATERIALS; NONLINEAR PROPERTIES; CELLULAR MATERIALS; CRACK; DEFORMATION; PROPAGATION; RESISTANCE; LEQUATION; BEHAVIOR;
D O I
10.1016/j.engstruct.2022.115581
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Auxetic honeycomb layer (HL) is a typical metamaterial with a negative Poisson's ratio. In this paper, the thermal shock fracture problem of the auxetic HL is investigated based on non-Fourier heat conduction. The uncracked non-Fourier temperature and thermal stress field are determined by the separation of variables method and the constitutive model of auxetic HL. The corresponding thermal stress intensity factor (TSIF) is obtained in numerical form. Based on the TSIF and the fracture toughness criterion, the critical temperature of auxetic HL is predicted. There is a clear difference between the results based on the non-Fourier and Fourier models. The maximum thermal stress and TSIF of the auxetic HL obtained from the non-Fourier model are both significantly higher than those obtained from the Fourier model. If non-Fourier effects are not taken into account, the critical temperature of the auxetic HL is also overestimated. In addition, the auxetic property can increase the critical temperature of the HL, whether based on the non-Fourier or Fourier model. The results demonstrate the good potential of the auxetic HL in the thermal protection system application.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Tensile fatigue of conventional and negative Poisson's ratio open cell PU foams [J].
Bezazi, Abderrezak ;
Scarpa, Fabrizio .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (03) :488-494
[2]  
CATTANEO C, 1958, CR HEBD ACAD SCI, V247, P431
[3]   Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction [J].
Chang, D. M. ;
Wang, B. L. .
ENGINEERING FRACTURE MECHANICS, 2012, 94 :29-36
[4]   Non-Fourier thermal shock resistance and transient thermal fracture of magneto-electro-elastic composite with a penny-shaped crack [J].
Chang, Dongmei ;
Wang, Baolin ;
Liu, Xuefeng ;
Wang, Tiegang ;
Jin, Gang ;
Han, Jianxin .
ENGINEERING FRACTURE MECHANICS, 2021, 253
[5]   ANALYSIS OF ELASTIC-MODULUS OF CONVENTIONAL FOAMS AND OF REENTRANT FOAM MATERIALS WITH A NEGATIVE POISSONS RATIO [J].
CHOI, JB ;
LAKES, RS .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1995, 37 (01) :51-59
[6]   NONLINEAR PROPERTIES OF POLYMER CELLULAR MATERIALS WITH A NEGATIVE POISSON RATIO [J].
CHOI, JB ;
LAKES, RS .
JOURNAL OF MATERIALS SCIENCE, 1992, 27 (17) :4678-4684
[7]   Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: Experiment and analysis [J].
Choi, JB ;
Lakes, RS .
INTERNATIONAL JOURNAL OF FRACTURE, 1996, 80 (01) :73-83
[8]  
CHOI JB, 1992, J MATER SCI, V27, P5375, DOI 10.1007/BF02403846
[9]   Non-Fourier heat conduction effect on prediction of temperature transients and thermal stress in skin cryopreservation [J].
Deng, ZS ;
Liu, J .
JOURNAL OF THERMAL STRESSES, 2003, 26 (08) :779-798
[10]   A novel hierarchical thermoplastic composite honeycomb cylindrical structure: Fabrication and axial compressive properties [J].
Du, Bing ;
Chen, Liming ;
Wu, Wenjun ;
Liu, Houchang ;
Zhao, Yang ;
Peng, Shiwei ;
Guo, Yongguang ;
Zhou, Hao ;
Chen, Liliang ;
Li, Weiguo ;
Fang, Daining .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 164 :136-145