Vanadium oxide nanocomposite as electrode materials for lithium-ion batteries with high specific discharge capacity and long cycling life

被引:12
作者
Alsherari, Sahr A. [1 ]
Janene, Fatma [2 ]
Moulahi, Ali [1 ,2 ]
Shili, Hechmi [3 ]
Alnhas, Ibrahim [1 ]
Mjejri, Issam [4 ]
机构
[1] Univ Tabuk, Alwajh Coll, Dept Chem, Tabuk 71421, Saudi Arabia
[2] Technol Pole Sidi Thabet, Natl Res Inst Phys & Chem Anal, Lab Mat Traitement & Anal, Sidi Thabet 2020, Tunisia
[3] Tabuk Univ, Dept Comp Sci, Tabuk, Saudi Arabia
[4] Univ Tunis, Unit Mat & Environm UR15ES01, IPEIT, 2 Rue Jawaher Lel Nahru, Sidi Thabet 1089, Montfleury, Tunisia
关键词
Nano-V2O5; Hydrothermal method; Hierarchical structure; Cathode materials; Lithium-ion batteries; HIGH-PERFORMANCE; COMPOSITE; CATHODE; HYBRID;
D O I
10.1007/s11581-022-04811-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a facile and low-cost method is used to elaborate V2O5/reduced graphene oxide (rGO) nanocomposites as cathode materials for lithium-ion batteries (LIBs). The structure, composition, and morphology of the hydrothermal V2O5/rGO composite powders are characterized by XRD, Raman spectroscopy, SEM, and TEM while their electrochemical performance was evaluated using cyclic voltammetry (CV) and charge/discharge studies. The V2O5/rGO cathode exhibits improved electrochemical performance in terms of specific capacitance, reversibility, and stability compared to single-component V2O5. Electrochemical characterization reveals that the new composite cathode combined the homemade V2O5 powders and graphene demonstrated high specific discharge capacity of 280 mAh g(-1) at 50 mA g(-1) and good stability upon 1000 cycles. Higher electrochemical capacity and stability of the new composite cathode are mainly ascribed to a cooperative effect between the reduced graphene with good electrical conductivity and the unique nano-sized V2O5 spheres with short diffusion pathways for lithium-ion diffusion.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 35 条
[1]   Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials [J].
Benedek, Peter ;
Forslund, Ola K. ;
Nocerino, Elisabetta ;
Yazdani, Nuri ;
Matsubara, Nami ;
Sassa, Yasmine ;
Juranyi, Fanni ;
Medarde, Marisa ;
Telling, Mark ;
Mansson, Martin ;
Wood, Vanessa .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) :16243-16249
[2]   Electrospun Carbon-Tin Oxide Composite Nanofibers for Use as Lithium Ion Battery Anodes [J].
Bonino, Christopher A. ;
Ji, Liwen ;
Lin, Zhan ;
Toprakci, Ozan ;
Zhang, Xiangwu ;
Khan, Saad A. .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (07) :2534-2542
[3]   Micro- and Nano-Structured Vanadium Pentoxide (V2O5) for Electrodes of Lithium-Ion Batteries [J].
Yue, Yuan ;
Liang, Hong .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[4]   Effect of current on electrodeposited MnO2 as supercapacitor and lithium-ion battery electrode [J].
Dai, Xiaoli ;
Zhang, Ming ;
Li, Tingting ;
Cui, Xumei ;
Shi, Yihan ;
Zhu, Xinghua ;
Wangyang, Peihua ;
Yang, Dingyu ;
Li, Jitao .
VACUUM, 2022, 195
[5]   Electrical transport and optical properties of vanadyl phosphate - polyaniline nanocomposites [J].
De, Sukanta ;
Dey, Arup ;
De, S. K. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (01) :66-72
[6]   NaV3O8/poly(3,4-ethylenedioxythiophene) composites as high-rate and long-lifespan cathode materials for reversible sodium storage [J].
Ding, Guo-Chun ;
Zhu, Li-Min ;
Yang, Qi ;
Xie, Ling-Ling ;
Cao, Xiao-Yu ;
Wang, Yu-Ling ;
Liu, Jian-Ping ;
Yang, Xin-Li .
RARE METALS, 2020, 39 (08) :865-873
[7]   A New, High Energy Sn-C/Li[Li0.2Ni0.4/3Co0.4/3Mn1.6/3]O2 Lithium-Ion Battery [J].
Elia, Giuseppe Antonio ;
Wang, Jun ;
Bresser, Dominic ;
Li, Jie ;
Scrosati, Bruno ;
Passerini, Stefano ;
Hassoun, Jusef .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) :12956-12961
[8]   Biphenylene and Phagraphene as Lithium Ion Battery Anode Materials [J].
Ferguson, David ;
Searles, Debra J. ;
Hankel, Marlies .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (24) :20577-20584
[9]   Titanium Niobium Oxide: From Discovery to Application in Fast-Charging Lithium-Ion Batteries [J].
Griffith, Kent J. ;
Harada, Yasuhiro ;
Egusa, Shun ;
Ribas, Rogerio M. ;
Monteiro, Robson S. ;
Von Dreele, Robert B. ;
Cheetham, Anthony K. ;
Cava, Robert J. ;
Grey, Clare P. ;
Goodenough, John B. .
CHEMISTRY OF MATERIALS, 2021, 33 (01) :4-18
[10]   Sb-Si Alloys and Multilayers for Sodium-Ion Battery Anodes [J].
Kalisvaart, W. Peter ;
Olsen, Brian C. ;
Luber, Erik J. ;
Buriak, Jillian M. .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (03) :2205-2213