CAYLEY-ABELS GRAPHS AND INVARIANTS OF TOTALLY DISCONNECTED, LOCALLY COMPACT GROUPS

被引:0
作者
Arnadottir, Arnbjorg Soffia [1 ]
Lederle, Waltraud [2 ]
Moller, Rognvaldur G. [3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[2] UCLouvain, Inst Rech Math & Phys, Chemin Cyclotron 2, B-1348 Louvain La Neuve, Belgium
[3] Univ Iceland, Sci Inst, IS-107 Reykjavik, Iceland
关键词
totally disconnected locally compact groups; Cayley-Abels graphs; modular function; scale function; groups acting on trees; PERMUTATION REPRESENTATIONS; SUBGROUPS;
D O I
10.1017/S1446788722000040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A connected, locally finite graph Gamma is a Cayley-Abels graph for a totally disconnected, locally compact group G if G acts vertex-transitively on Gamma with compact, open vertex stabilizers. Define the minimal degree of G as the minimal degree of a Cayley-Abels graph of G. We relate the minimal degree in various ways to the modular function, the scale function and the structure of compact open subgroups. As an application, we prove that if T-d denotes the d-regular tree, then the minimal degree of Aut(T-d) is d for all d >= 2.
引用
收藏
页码:145 / 177
页数:33
相关论文
共 40 条