COMPARISON RESULT FOR QUASI-LINEAR ELLIPTIC EQUATIONS WITH GENERAL GROWTH IN THE GRADIENT

被引:2
作者
Alvino, Angelo [1 ]
Betta, Maria francesca [2 ]
Mercaldo, Anna [1 ]
Volpicelli, Roberta [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Naples, Italy
[2] Univ Napoli Parthenope, Dipartimento Ingn, Naples, Italy
关键词
Existence; uniqueness; comparison result; rearrangements; elliptic equations; UNIQUENESS; EXISTENCE; PRINCIPLE;
D O I
10.3934/cpaa.2024013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a comparison result for a class of Dirichlet boundary problems whose model is { -Delta u = beta|del u|(q) + cu + f in Omega u = 0 su partial derivative Omega, where Omega is an open bounded subset of R-N, N > 2. We also prove an existence and uniqueness result for weak solution to these problems.
引用
收藏
页码:339 / 355
页数:17
相关论文
共 23 条
[1]  
Alvino A, 2019, DIFFER INTEGRAL EQU, V32, P223
[2]   Sharp a priori estimates for a class of nonlinear elliptic equations with lower order terms [J].
Alvino, A. ;
Ferone, V. ;
Mercaldo, A. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (04) :1169-1201
[3]  
ALVINO A, 1990, ANN I H POINCARE-AN, V7, P37
[4]  
ALVINO A, 1977, B UNIONE MAT ITAL, V14
[5]   Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions [J].
Barles, G ;
Murat, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (01) :77-101
[6]  
Barles G, 2006, ANN SCUOLA NORM-SCI, V5, P107
[7]   Continuous dependence on the data for nonlinear elliptic equations with a lower order term [J].
Betta M.F. ;
Mercaldo A. ;
Volpicelli R. .
Ricerche di Matematica, 2014, 63 (Suppl 1) :41-56
[8]   GRADIENT ESTIMATES AND COMPARISON PRINCIPLE FOR SOME NONLINEAR ELLIPTIC EQUATIONS [J].
Betta, Maria Francesca ;
Di Nardo, Rosaria ;
Mercaldo, Anna ;
Perrotta, Adamaria .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) :897-922
[9]   Uniqueness results for nonlinear elliptic equations with a lower order term [J].
Betta, MF ;
Mercaldo, A ;
Murat, F ;
Porzio, MM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (02) :153-170
[10]   EXISTENCE OF BOUNDED SOLUTIONS FOR NON-LINEAR ELLIPTIC UNILATERAL PROBLEMS [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :183-196