NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION

被引:1
|
作者
Varosanec, Sanja [1 ]
机构
[1] Univ Zagreb, Dept Math, Fac Sci, Zagreb, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 04期
关键词
Generalized Riemann-Liouville fractional integral; Chebyshev-type inequality; log-convexity;
D O I
10.7153/jmi-2023-17-88
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain several results for the generalized Riemann-Liouville fractional integrals whose orders are variable. We prove Chebyshev-type inequalities and consider the log -convexity of a function whose variable is the order of the generalized Riemann-Liouville fractional integral. Obtained results are applied to some special kinds of fractional integrals.
引用
收藏
页码:1351 / 1361
页数:11
相关论文
共 3 条
  • [1] Mesoscopic fractional kinetic equations versus a Riemann-Liouville integral type
    Nigmatullin, Raoul R.
    Trujillo, Juan J.
    ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 155 - +
  • [2] Analysis of Caputo Sequential Fractional Differential Equations with Generalized Riemann-Liouville Boundary Conditions
    Gunasekaran, Nallappan
    Manigandan, Murugesan
    Vinoth, Seralan
    Vadivel, Rajarathinam
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [3] A Study of Nonlinear Fractional-Order Boundary Value Problem with Nonlocal Erdelyi-Kober and Generalized Riemann-Liouville Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (02) : 121 - 139