Strategies for single base gene editing in an immortalized human cell line by CRISPR/Cas9 technology

被引:1
|
作者
Corrado, Alda [1 ]
Aceto, Romina [1 ,2 ]
Miglietta, Simona [3 ]
Silvestri, Roberto [1 ]
Dell'Anno, Irene [1 ]
Lepori, Irene [4 ]
Ricci, Benedetta [5 ]
Romei, Cristina [6 ]
Giovannoni, Roberto [1 ]
Poliseno, Laura [4 ]
Evangelista, Monica [4 ]
Vitiello, Marianna [4 ]
Cipollini, Monica [1 ]
Elisei, Rossella [6 ]
Landi, Stefano [1 ]
Gemignani, Federica [1 ]
机构
[1] Univ Pisa, Dept Biol, Genet Unit, Via Derna 1, I-56126 Pisa, Italy
[2] Humanitas Clin & Res Ctr IRCCS, Via Manzoni 56, I-20089 Milan, Italy
[3] IRCCS San Raffaele Sci Inst, San Raffaele Telethon Inst Gene Therapy SR Tiget, Via Olgettina 60, I-20132 Milan, Italy
[4] CNR, Inst Clin Physiol IFC, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
[5] Fdn IRCCS Ist Neurol Carlo Besta, Via Celoria 11, I-20133 Milan, Italy
[6] Univ Pisa, Dept Clin & Expt Med, Endocrine Unit, Via Paradisa 2, I-56124 Pisa, Italy
关键词
CRISPR/Cas9; Knock-in; Human cell lines; Single base DNA editing; Double nickase strategy;
D O I
10.1007/s13205-023-03878-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The use of CRISPR/Cas9 system has rapidly grown in the last years. Here, the optimization of gene editing of a single-nucleotide polymorphism in a human non-malignant somatic cell line of thyrocytes (Nthy-Ori) was described highlighting strategies for overcoming the problems concerning the delivery and off-targets. We employed both lentivirus and chemical lipids as delivery agents and two strategies for creating the double-strand breaks (DSB). The former induced a DSB by a classical Cas9 nuclease (standard strategy), while the second one employed a modified Cas9 creating a single-strand break (SSB). The knock-in was carried out using a single-stranded donor oligonucleotide or the HR410-PA donor vector (HR). The desired cells could be obtained by combining the double nickase system with the HR vector transfected chemically. This result could be due to the type of DSB, likely processed mainly by non-homologous end joining when blunt (standard strategy) and by HR when overhanging (double nickase). Our results showed that the double nickase is suitable for knocking-in the immortalized Nthy-Ori cell line, while the standard CRISPR/Cas9 system is suitable for gene knock-out creating in/del mutations.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9
    Yumlu, Saniye
    Stumm, Juergen
    Bashir, Sanum
    Dreyer, Anne-Kathrin
    Lisowski, Pawel
    Danner, Eric
    Kuehn, Ralf
    METHODS, 2017, 121 : 29 - 44
  • [22] CRISPR/Cas9 TECHNOLOGY- A NEW BOON IN GENOME EDITING
    Benazir, Fathima
    Abhinayani, Gowlikar
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2016, 7 (08): : 3336 - 3347
  • [23] CRISPR/Cas9 genome editing in wheat
    Dongjin Kim
    Burcu Alptekin
    Hikmet Budak
    Functional & Integrative Genomics, 2018, 18 : 31 - 41
  • [24] CRISPR/Cas9 genome editing in wheat
    Kim, Dongjin
    Alptekin, Burcu
    Budak, Hikmet
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2018, 18 (01) : 31 - 41
  • [25] CRISPR/Cas9 gene editing technology: a precise and efficient tool for crop quality improvement
    Yingxin Guo
    Guangdong Zhao
    Xing Gao
    Lin Zhang
    Yanan Zhang
    Xiaoming Cai
    Xuejiao Yuan
    Xingqi Guo
    Planta, 2023, 258
  • [26] Applications of CRISPR/Cas9 technology in mice and livestock genome editing: Current research
    Maj, Dorota
    Gorka, Klaudiusz
    ANNALS OF ANIMAL SCIENCE, 2024,
  • [27] Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing
    Kaulich, Manuel
    Dowdy, Steven F.
    NUCLEIC ACID THERAPEUTICS, 2015, 25 (06) : 287 - 296
  • [28] Off-target effects in CRISPR/Cas9 gene editing
    Guo, Congting
    Ma, Xiaoteng
    Gao, Fei
    Guo, Yuxuan
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
  • [29] Recent advances of CRISPR/Cas9 gene editing in the treatment of β-thalassemia
    Jie, Qian
    Lei, Shuangyin
    Qu, Chao
    Wu, Hao
    Liu, Yingru
    Huang, Ping
    Teng, Shuzhi
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (21): : 2492 - 2508
  • [30] Application of CRISPR/Cas9 System for Efficient Gene Editing in Peanut
    Neelakandan, Anjanasree K.
    Wright, David A.
    Traore, Sy M.
    Ma, Xingli
    Subedi, Binita
    Veeramasu, Suman
    Spalding, Martin H.
    He, Guohao
    PLANTS-BASEL, 2022, 11 (10):