Periodic Gabor frames on positive half line

被引:0
作者
Ahmad, Owais [1 ]
机构
[1] Natl Inst Technol, Dept Math, Srinagar 190006, Jammu & Kashmir, India
来源
ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES | 2023年 / 50卷 / 01期
关键词
Gabor frame; Parseval frame; Periodic set;
D O I
10.52846/ami.v50i1.1647
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the concept of periodic Gabor frames on positive half line. Firstly, we establish a necessary and sufficient condition for a periodic Gabor system to be a Gabor frame. Then, we present some equivalent characterizations of Parseval Gabor frames on positive half line by means of some fundamental equations in time domain.
引用
收藏
页码:171 / 188
页数:18
相关论文
共 27 条
  • [1] Ahmad O, 2021, ANN UNIV CRAIOVA-MAT, V48, P293
  • [2] Gabor frames on non-Archimedean fields
    Ahmad, Owais
    Shah, Firdous A.
    Sheikh, Neyaz A.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (05)
  • [3] Multi-window Gabor expansion for evolutionary spectral analysis
    Akan, A
    Chaparro, LF
    [J]. SIGNAL PROCESSING, 1997, 63 (03) : 249 - 262
  • [4] Christensen O, 2015, An introduction to frames and Riesz bases, VSecond
  • [5] PAINLESS NONORTHOGONAL EXPANSIONS
    DAUBECHIES, I
    GROSSMANN, A
    MEYER, Y
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) : 1271 - 1283
  • [6] A CLASS OF NONHARMONIC FOURIER SERIES
    DUFFIN, RJ
    SCHAEFFER, AC
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAR) : 341 - 366
  • [7] Farkov Y. A., 2005, P INT C WAV SPLIN ST, P4
  • [8] ON BIORTHOGONAL WAVELETS RELATED TO THE WALSH FUNCTIONS
    Farkov, Yu. A.
    Maksimov, A. Yu.
    Stroganov, S. A.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2011, 9 (03) : 485 - 499
  • [9] On wavelets related to the Walsh series
    Farkov, Yu. A.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2009, 161 (01) : 259 - 279
  • [10] Farkov Yu.A., 2012, AM J COMPUT MATH, V2, P82