Single-Crystal Germanium by Elevated-Laser-Liquid-Phase-Epitaxy (ELLPE) Technique for Monolithic 3D ICs

被引:1
作者
Chung, Hao-Tung [1 ]
Pan, Yu-Ming [2 ]
Lin, Nein-Chih [3 ]
Hong, Zhong-Jie [2 ]
Shih, Bo-Jheng [2 ]
Yang, Chih-Chao [3 ]
Shen, Chang-Hong [3 ]
Huang, Po-Tsang [2 ]
Cheng, Huang-Chung [1 ]
Chen, Kuan-Neng [1 ]
Hu, Chenming [2 ,4 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Inst Elect, Dept Elect Engn, Hsinchu 30010, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
[3] Taiwan Semicond Res Inst, Natl Appl Res Labs, Hsinchu 30078, Taiwan
[4] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
Monolithic; 3D; germanium; single-crystal; laser crystallization; epitaxy; low thermal budget; THIN-FILM TRANSISTORS; GRAIN-BOUNDARY; ON-INSULATOR; SILICON; INTEGRATION;
D O I
10.1109/LED.2023.3275181
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes and demonstrates single-crystal Germanium (Ge) growth by elevated-laser-liquid-phase-epitaxy (ELLPE) and the fabrication of Ge Fin field-effect transistors (FinFETs) for the monolithic three-dimensional integrated circuits (monolithic 3D ICs). This technique permitted the fabrication of single-crystalline (100) Ge film and FinFETs without random grain boundaries. In comparison with the poly-Ge FinFETs, the ELLPE Ge FinFETs exhibit superior performance and uniformity. Moreover, the ANSYS simulated maximum temperature of bottom circuits during the ELLPE technique does not exceed 400 ?, therefore allowing monolithic 3D integration of ICs.
引用
收藏
页码:1036 / 1039
页数:4
相关论文
共 22 条
[1]  
Caymax M, 2009, INT EL DEVICES MEET, P428
[2]  
Chui CO, 2002, INTERNATIONAL ELECTRON DEVICES 2002 MEETING, TECHNICAL DIGEST, P437, DOI 10.1109/IEDM.2002.1175872
[3]  
Feng J., IEEE ELECTR DEVICE L, V29
[4]   P-channel germanium FinFET based on rapid melt growth [J].
Feng, Jia ;
Woo, Raymond ;
Chen, Shulu ;
Liu, Yaocheng ;
Griffin, Peter B. ;
Plummer, James D. .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (07) :637-639
[5]   Integration of germanium-on-insulator and silicon MOSFETs on a silicon substrate [J].
Feng, Jia ;
Liu, Yaocheng ;
Griffin, Peter. B. ;
Plummer, James D. .
IEEE ELECTRON DEVICE LETTERS, 2006, 27 (11) :911-913
[6]   Mobility characterization of Ge-on-insulator metal-oxide-semiconductor field-effect transistors with striped Ge channels fabricated by lateral liquid-phase epitaxy [J].
Hosoi, Takuji ;
Suzuki, Yuichiro ;
Shimura, Takayoshi ;
Watanabe, Heiji .
APPLIED PHYSICS LETTERS, 2014, 105 (17)
[7]   Single-crystal germanium layers grown on silicon by nanowire seeding [J].
Hu, Shu ;
Leu, Paul W. ;
Marshall, Ann F. ;
McIntyre, Paul C. .
NATURE NANOTECHNOLOGY, 2009, 4 (10) :649-653
[8]   Heteroepitaxy of Ge on Si(001) with pits and windows transferred from free-standing porous alumina mask [J].
Huangfu, Yourui ;
Zhan, Wenbo ;
Hong, Xia ;
Fang, Xu ;
Ding, Guqiao ;
Ye, Hui .
NANOTECHNOLOGY, 2013, 24 (18)
[9]  
Krishnamohan T., 2008, IEDM
[10]   High-Performance Recessed-Channel Germanium Thin-Film Transistors via Excimer Laser Crystallization [J].
Liao, Chan-Yu ;
Chen, Shih-Hung ;
Huang, Wen-Hsien ;
Shen, Chang-Hong ;
Shieh, Jia-Min ;
Cheng, Huang-Chung .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (03) :367-370