Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics

被引:8
作者
Li, Tao E. [1 ]
Hammes-Schiffer, Sharon [1 ]
机构
[1] Yale Univ, Dept Chem, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; PROTON-TRANSFER; MALONALDEHYDE; SPECTRA; STATES; ATOMS;
D O I
10.1063/5.0142007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born-Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications.
引用
收藏
页数:11
相关论文
共 61 条
  • [11] Development of Electron-Proton Density Functionals for Multicomponent Density Functional Theory
    Chakraborty, Arindam
    Pak, Michael V.
    Hammes-Schiffer, Sharon
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (15)
  • [12] Symmetrical Windowing for Quantum States in Quasi-Classical Trajectory Simulations
    Cotton, Stephen J.
    Miller, William H.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (32) : 7190 - 7194
  • [13] Enhancing the applicability of multicomponent time-dependent density functional theory
    Culpitt, Tanner
    Yang, Yang
    Pavosevic, Fabijan
    Tao, Zhen
    Hammes-Schiffer, Sharon
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (20)
  • [14] PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python']Python
    De Santis, Matteo
    Storchi, Loriano
    Belpassi, Leonardo
    Quiney, Harry M.
    Tarantelli, Francesco
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (04) : 2410 - 2429
  • [16] Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
    Epifanovsky, Evgeny
    Gilbert, Andrew T. B.
    Feng, Xintian
    Lee, Joonho
    Mao, Yuezhi
    Mardirossian, Narbe
    Pokhilko, Pavel
    White, Alec F.
    Coons, Marc P.
    Dempwolff, Adrian L.
    Gan, Zhengting
    Hait, Diptarka
    Horn, Paul R.
    Jacobson, Leif D.
    Kaliman, Ilya
    Kussmann, Jorg
    Lange, Adrian W.
    Lao, Ka Un
    Levine, Daniel S.
    Liu, Jie
    McKenzie, Simon C.
    Morrison, Adrian F.
    Nanda, Kaushik D.
    Plasser, Felix
    Rehn, Dirk R.
    Vidal, Marta L.
    You, Zhi-Qiang
    Zhu, Ying
    Alam, Bushra
    Albrecht, Benjamin J.
    Aldossary, Abdulrahman
    Alguire, Ethan
    Andersen, Josefine H.
    Athavale, Vishikh
    Barton, Dennis
    Begam, Khadiza
    Behn, Andrew
    Bellonzi, Nicole
    Bernard, Yves A.
    Berquist, Eric J.
    Burton, Hugh G. A.
    Carreras, Abel
    Carter-Fenk, Kevin
    Chakraborty, Romit
    Chien, Alan D.
    Closser, Kristina D.
    Cofer-Shabica, Vale
    Dasgupta, Saswata
    de Wergifosse, Marc
    Deng, Jia
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (08)
  • [17] Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
    Flick, Johannes
    Ruggenthaler, Michael
    Appel, Heiko
    Rubio, Angel
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (12) : 3026 - 3034
  • [18] Theoretical Challenges in Polaritonic Chemistry
    Fregoni, Jacopo
    Garcia-Vidal, Francisco J.
    Feist, Johannes
    [J]. ACS PHOTONICS, 2022, 9 (04): : 1096 - 1107
  • [19] Cavity Casimir-Polder Forces and Their Effects in Ground-State Chemical Reactivity
    Galego, Javier
    Climent, Claudia
    Garcia-Vidal, Francisco J.
    Feist, Johannes
    [J]. PHYSICAL REVIEW X, 2019, 9 (02):
  • [20] Liquid-Phase Vibrational Strong Coupling
    George, Jino
    Shalabney, Atef
    Hutchison, James A.
    Genet, Cyriaque
    Ebbesen, Thomas W.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (06): : 1027 - 1031