Simulation and evaluation of multicriteria planning heuristics for demand response in datacenters

被引:10
作者
Murana, Jonathan [1 ]
Nesmachnow, Sergio [2 ]
机构
[1] Univ Republica, Fac Engn, Montevideo, Uruguay
[2] Univ Republica, Julio Herrera y Reissig 565, Montevideo 11200, Uruguay
来源
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL | 2023年 / 99卷 / 03期
关键词
Demand response; computational intelligence; multicriteria; planning; datacenters; INCENTIVE MECHANISM; ENERGY; TOOL;
D O I
10.1177/00375497211020083
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article presents the evaluation of multicriteria planning heuristics for demand response in datacenters and supercomputing facilities. This is a relevant problem for science nowadays, when the growing application of cutting-edge technologies (numerical methods, big data processing, artificial intelligence, smart systems, etc.) has raised the energy demands in datacenters. The proposed approach involves a negotiation mechanism for colocation datacenters, where the datacenter operator agrees prices and quality of service with a group of tenants. Twelve different multicriteria heuristics are proposed for planning using both local and global information at tenants and datacenter operator levels. The proposed approach is evaluated applying simulations over realistic scenarios considering different tenant sizes and heterogeneity levels that model different business models for datacenters. Several metrics are computed and Pareto analysis is provided. The main results indicate that accurate trade-off values between the problem objectives are obtained, offering different options for decision making. The proposed approach provides a useful and applicable method for demand response planning in modern datacenters.
引用
收藏
页码:291 / 310
页数:20
相关论文
共 46 条
[1]  
Alvarez P., SIMULATION MODELING, P155
[2]   An Instrumentation Approach for Hardware-Agnostic Software Characterization [J].
Anghel, Andreea ;
Vasilescu, Laura Mihaela ;
Mariani, Giovanni ;
Jongerius, Rik ;
Dittmann, Gero .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2016, 44 (05) :924-948
[3]  
[Anonymous], 2015, Handbook on data centers
[4]  
[Anonymous], 2017, Digitalization and Energy 2017
[5]   Min_c: Heterogeneous Concentration Policy for Energy-Aware Scheduling of Jobs with Resource Contention [J].
Armenta-Cano, F. A. ;
Tchernykh, A. ;
Cortes-Mendoza, J. M. ;
Yahyapour, R. ;
Drozdov, A. Yu ;
Bouvry, P. ;
Kliazovich, D. ;
Avetisyan, A. ;
Nesmachnow, S. .
PROGRAMMING AND COMPUTER SOFTWARE, 2017, 43 (03) :204-215
[6]   GSSIM - A tool for distributed computing experiments [J].
Bak, Slawomir ;
Krystek, Marcin ;
Kurowski, Krzysztof ;
Oleksiak, Ariel ;
Piatek, Wojciech ;
Weglarz, Jan .
SCIENTIFIC PROGRAMMING, 2011, 19 (04) :231-251
[7]   CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms [J].
Calheiros, Rodrigo N. ;
Ranjan, Rajiv ;
Beloglazov, Anton ;
De Rose, Cesar A. F. ;
Buyya, Rajkumar .
SOFTWARE-PRACTICE & EXPERIENCE, 2011, 41 (01) :23-50
[8]   Greening multi-tenant data center demand response [J].
Chen, Niangjun ;
Ren, Xiaoqi ;
Ren, Shaolei ;
Wierman, Adam .
PERFORMANCE EVALUATION, 2015, 91 :229-254
[9]  
Coello CAC., 2002, EVOLUTIONARY ALGORIT, DOI DOI 10.1007/978-1-4757-5184-0
[10]  
Demski, 1997, MANAGERIAL USES ACCO, P169