Boosting 5G on Smart Grid Communication: A Smart RAN Slicing Approach

被引:8
作者
Carrillo, Dick [1 ]
Kalalas, Charalampos [2 ]
Raussi, Petra [3 ]
Michalopoulos, Diomidis S. [4 ]
Rodriguez, Demostenes Z. [5 ]
Kokkoniemi-Tarkkanen, Heli [6 ]
Ahola, Kimmo [6 ]
Nardelli, Pedro H. J. [7 ,8 ]
Fraidenraich, Gustavo [9 ]
Popovski, Petar [10 ]
机构
[1] Lappeenranta Lahti Univ Technol, Lappeenranta, Finland
[2] Ctr Tecnol Telecomunicac Catalunya CTTC CERCA, Barcelona, Spain
[3] Aalto Univ, Espoo, Finland
[4] Nokia, Munich, Germany
[5] Univ Fed Lavras, Lavras, Brazil
[6] VTT Tech Res Ctr Finland, Tampere, Finland
[7] LUT Univ, Lappeenranta, Finland
[8] Univ Oulu, Oulu, Finland
[9] Univ Estadual Campinas, Campinas, Brazil
[10] Aalborg Univ, Aalborg, Denmark
基金
芬兰科学院;
关键词
Smart grids; 5G mobile communication; Monitoring; Business; Ultra reliable low latency communication; Reliability; Power systems; NETWORKS;
D O I
10.1109/MWC.004.2200079
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Fifth-generation (5G) and beyond systems are expected to accelerate the ongoing transformation of power systems toward the smart grid. However, the inherent heterogeneity in smart grid services and requirements pose significant challenges toward the definition of a unified network architecture. In this context, radio access network (RAN) slicing emerges as a key 5G enabler to ensure interoperable connectivity and service management in the smart grid. This article introduces a novel RAN slicing framework which leverages the potential of artificial intelligence (Al) to support IEC 61850 smart grid services. With the aid of deep reinforcement learning, efficient radio resource management for RAN slices is attained, while conforming to the stringent performance requirements of a smart grid self-healing use case. Our research outcomes advocate the adoption of emerging Al-native approaches for RAN slicing in beyond-5G systems, and lay the foundations for differentiated service provisioning in the smart grid.
引用
收藏
页码:170 / 178
页数:9
相关论文
共 15 条
[1]  
3GPP, 2021, 3 GENERATION PARTNER
[2]  
3GPP, 2020, Technical Specification (TS) 38.211 v16.0.0
[3]  
3GPP, 2022, Technical Report 36.931
[4]   Business Models for Local 5G Micro Operators [J].
Ahokangas, Petri ;
Matinmikko-Blue, Marja ;
Yrjola, Seppo ;
Seppanen, Veikko ;
Hammainen, Heikki ;
Jurva, Risto ;
Latva-aho, Matti .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2019, 5 (03) :730-740
[5]  
[Anonymous], 2004, IEC- 61850
[6]   5G Mobile Cellular Networks: Enabling Distributed State Estimation for Smart Grids [J].
Cosovic, Mirsad ;
Tsitsimelis, Achilleas ;
Vukobratovic, Dejan ;
Matamoros, Javier ;
Anton-Haro, Carles .
IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (10) :62-69
[7]   5G RAN Slicing for Verticals: Enablers and Challenges [J].
Elayoubi, Salah Eddine ;
Ben Jemaa, Sana ;
Altman, Zwi ;
Galindo-Serrano, Ana .
IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (01) :28-34
[8]   Smart Grid Technologies: Communication Technologies and Standards [J].
Gungor, Vehbi C. ;
Sahin, Dilan ;
Kocak, Taskin ;
Ergut, Salih ;
Buccella, Concettina ;
Cecati, Carlo ;
Hancke, Gerhard P. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2011, 7 (04) :529-539
[9]   A Hierarchical Soft RAN Slicing Framework for Differentiated Service Provisioning [J].
Li, Junling ;
Shi, Weisen ;
Yang, Peng ;
Ye, Qiang ;
Shen, Xuemin ;
Li, Xu ;
Rao, Jaya .
IEEE WIRELESS COMMUNICATIONS, 2020, 27 (06) :90-97
[10]   Intelligent Radio Access Network Slicing for Service Provisioning in 6G: A Hierarchical Deep Reinforcement Learning Approach [J].
Mei, Jie ;
Wang, Xianbin ;
Zheng, Kan ;
Boudreau, Gary ;
Bin Sediq, Akram ;
Abou-Zeid, Hatem .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (09) :6063-6078