Thickness dependent CO2 adsorption of poly(ethyleneimine) thin films for direct air capture

被引:14
|
作者
Hoffman, John R. [1 ]
Baumann, Avery E. [1 ]
Stafford, Christopher M. [1 ]
机构
[1] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
关键词
CO2; adsorption; Polyethyleneimine; QCM; PM-IRRAS; Amine efficiency; Air/amine interface; CARBON-DIOXIDE; MESOPOROUS SILICA; KINETICS; ADSORPTION/DESORPTION; ADSORBENT; SORBENTS; SBA-15; AMINES;
D O I
10.1016/j.cej.2023.148381
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mesoporous silica impregnated with polyethyleneimine (PEI) has been shown to be a suitable material for the direct air capture (DAC) of CO2. Factors such as CO2 concentration, temperature, and amine loading impact overall capture capacity and amine efficiency by altering diffusional resistance and reaction kinetics. When studied in the impregnated 3-dimensional sorbent material, internal diffusion impacts the evaluation of the reaction kinetics at the air/amine interface. In this work, we designed a novel tandem quartz crystal microbalance with dissipation (QCM-D) and polarization modulation infrared reflective absorption spectroscopy (PM-IRRAS) instrument. CO2 adsorption kinetics of the PEI-based amine layer in a 2-dimensional geometry were studied at a variety of film thicknesses (10 nm to 100 nm), temperatures (25 degrees C to 80 degrees C), and CO2 concentrations (5 % and 0.04 % by mole fraction). Total CO2 capture capacity increased with film thickness but decreased amine efficiency, as additional diffusional resistance for thicker films limits access to available amine sites. The capture capacity of thick films (>50 nm) is shown to be limited by amine availability, while capture of thin films (<50 nm) is limited by CO2 availability. A 50 nm PEI film was shown to be optimal for capture of 0.04 % (400 ppm) CO2. The adsorption profiles for these conditions were fitted to pseudo-first order and Avrami fractional order models. The reaction process switches between a diffusion limited reaction to a kinetic limited reaction at 80 degrees C when using 5 % CO2 and 55 degrees C when using 0.04 % CO2. These results offer accurate analysis of adsorption of CO2 at the air/amine interface of PEI films which can be used for the design of future sorbent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Direct air capture of CO2 with aqueous peptides and crystalline guanidines
    Custelcean, Radu
    Garrabrant, Kathleen A.
    Agullo, Pierrick
    Williams, Neil J.
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (04):
  • [42] Review on the direct air CO2 capture by microalgae: Bibliographic mapping
    Maghzian, Ali
    Aslani, Alireza
    Zahedi, Rahim
    ENERGY REPORTS, 2022, 8 : 3337 - 3349
  • [43] 3D printing of poly(ethyleneimine)-functionalized Mg-Al mixed metal oxide monoliths for direct air capture of CO 2
    Shao, Qingyang
    Gan, Zhuozhen
    Ge, Bingyao
    Liu, Xuyi
    Chen, Chunping
    O'Hare, Dermot
    Zhu, Xuancan
    JOURNAL OF ENERGY CHEMISTRY, 2024, 96 : 491 - 500
  • [44] Development of economically-viable adsorption-based processes for direct capture of CO2 from air
    Sholl, David S.
    Kulkarni, Ambarish
    Didas, Stephanie
    Jones, Christopher W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [45] Direct air capture of CO2 using biochar prepared from sewage sludge: Adsorption capacity and kinetics
    Liu, Jun
    Wang, Zefan
    Liang, Chenyang
    Fang, Kehao
    Li, Shaokang
    Guo, Xinwei
    Wang, Tao
    Fang, Mengxiang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 948
  • [46] Hierarchical ion interactions in the direct air capture of CO2 at air/aqueous interfaces
    Premadasa, Uvinduni I.
    Kumar, Nitesh
    Stamberga, Diana
    Bocharova, Vera
    Damron, Joshua T.
    Li, Tianyu
    Roy, Santanu
    Ma, Ying-Zhong
    Bryantsev, Vyacheslav S.
    Doughty, Benjamin
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (16):
  • [47] Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture
    Sang Jae Park
    Jason J. Lee
    Caroline B. Hoyt
    Dharam R. Kumar
    Christopher W. Jones
    Adsorption, 2020, 26 : 89 - 101
  • [48] Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture
    Park, Sang Jae
    Lee, Jason J.
    Hoyt, Caroline B.
    Kumar, Dharam R.
    Jones, Christopher W.
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2020, 26 (01): : 89 - 101
  • [49] Direct CO2 Capture from Air using Poly(ethylenimine)-Loaded Polymer/Silica Fiber Sorbents
    Sujan, Achintya R.
    Pang, Simon H.
    Zhu, Guanghui
    Jones, Christopher W.
    Liyely, Ryan P.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (05) : 5264 - 5273
  • [50] Electrospun Poly(vinyl alcohol)-L-Arginine Nanofiber Composites for Direct Air Capture of CO2
    Korah, Mani Modayil
    Ly, Salma
    Barbosa, Thiago Stangherlin
    Nile, Richard
    Jin, Kailong
    Lackner, Klaus S.
    Green, Matthew D.
    ACS ES&T ENGINEERING, 2022, : 373 - 386