Thickness dependent CO2 adsorption of poly(ethyleneimine) thin films for direct air capture

被引:14
|
作者
Hoffman, John R. [1 ]
Baumann, Avery E. [1 ]
Stafford, Christopher M. [1 ]
机构
[1] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
关键词
CO2; adsorption; Polyethyleneimine; QCM; PM-IRRAS; Amine efficiency; Air/amine interface; CARBON-DIOXIDE; MESOPOROUS SILICA; KINETICS; ADSORPTION/DESORPTION; ADSORBENT; SORBENTS; SBA-15; AMINES;
D O I
10.1016/j.cej.2023.148381
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mesoporous silica impregnated with polyethyleneimine (PEI) has been shown to be a suitable material for the direct air capture (DAC) of CO2. Factors such as CO2 concentration, temperature, and amine loading impact overall capture capacity and amine efficiency by altering diffusional resistance and reaction kinetics. When studied in the impregnated 3-dimensional sorbent material, internal diffusion impacts the evaluation of the reaction kinetics at the air/amine interface. In this work, we designed a novel tandem quartz crystal microbalance with dissipation (QCM-D) and polarization modulation infrared reflective absorption spectroscopy (PM-IRRAS) instrument. CO2 adsorption kinetics of the PEI-based amine layer in a 2-dimensional geometry were studied at a variety of film thicknesses (10 nm to 100 nm), temperatures (25 degrees C to 80 degrees C), and CO2 concentrations (5 % and 0.04 % by mole fraction). Total CO2 capture capacity increased with film thickness but decreased amine efficiency, as additional diffusional resistance for thicker films limits access to available amine sites. The capture capacity of thick films (>50 nm) is shown to be limited by amine availability, while capture of thin films (<50 nm) is limited by CO2 availability. A 50 nm PEI film was shown to be optimal for capture of 0.04 % (400 ppm) CO2. The adsorption profiles for these conditions were fitted to pseudo-first order and Avrami fractional order models. The reaction process switches between a diffusion limited reaction to a kinetic limited reaction at 80 degrees C when using 5 % CO2 and 55 degrees C when using 0.04 % CO2. These results offer accurate analysis of adsorption of CO2 at the air/amine interface of PEI films which can be used for the design of future sorbent materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effect of SO2 on the CO2 Capture Performance of Self-Supported Branched Poly(ethyleneimine) Scaffolds
    Narayanan, Pavithra
    Lively, Ryan P.
    Jones, Christopher W.
    ENERGY & FUELS, 2023, 37 (07) : 5257 - 5269
  • [32] Direct air capture of CO2 in the Republic of Ireland. Is it necessary?
    Casaban, Daniel
    Tsalaporta, Elena
    ENERGY REPORTS, 2022, 8 : 10449 - 10463
  • [33] Sodium cation exchanged zeolites for direct air capture of CO2
    Kim, Do Yeong
    Bae, Wo Bin
    Min, Haehyun
    Ryu, Kyeong-Hun
    Kweon, Sungjoon
    Tran, Linh Mai
    Kim, Young Jin
    Park, Min Bum
    Kang, Sung Bong
    APPLIED SURFACE SCIENCE ADVANCES, 2025, 25
  • [34] A direct air capture rotary adsorber for CO2 enrichment in greenhouses
    Wu, Junye
    Wang, Kuihua
    Zhao, Junde
    Chen, Yanlin
    Gan, Zhuozhen
    Zhu, Xuancan
    Wang, Ruzhu
    Wang, Chi-Hwa
    Tong, Yen Wah
    Ge, Tianshu
    DEVICE, 2024, 2 (11):
  • [35] Direct air capture of CO2 for solar fuel production in flow
    Kar, Sayan
    Kim, Dongseok
    Annuar, Ariffin Bin Mohamad
    Sarma, Bidyut Bikash
    Stanton, Michael
    Lam, Erwin
    Bhattacharjee, Subhajit
    Karak, Suvendu
    Greer, Heather F.
    Reisner, Erwin
    NATURE ENERGY, 2025,
  • [36] Integration of thermochemical water splitting with CO2 direct air capture
    Brady, Casper
    Davis, Mark E.
    Xu, Bingjun
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (50) : 25001 - 25007
  • [37] Electrochemical Conversion of CO2 from Direct Air Capture Solutions
    Gutierrez-Sanchez, Oriol
    de Mot, Bert
    Daems, Nick
    Bulut, Metin
    Vaes, Jan
    Pant, Deepak
    Breugelmans, Tom
    ENERGY & FUELS, 2022, 36 (21) : 13115 - 13123
  • [38] A novel contactor for reducing the cost of direct air capture of CO2
    Tegeler, Ed
    Cui, Yanran
    Masoudi, Mansour
    Bahmanpour, Ali M.
    Colbert, Tyler
    Hensel, Jacob
    Balakotaiah, Vemuri
    CHEMICAL ENGINEERING SCIENCE, 2023, 281
  • [39] Moisture-driven CO2 pump for direct air capture
    Wade, Jennifer L.
    Marques, Horacio Lopez
    Wang, Winston
    Flory, Justin
    Freeman, Benny
    JOURNAL OF MEMBRANE SCIENCE, 2023, 685
  • [40] Nanosilica polyamidoamine dendrimers for enhanced direct air CO2 capture
    Kulkarni, Vaishnavi
    Parthiban, Jayashree
    Singh, Sanjay Kumar
    NANOSCALE, 2024, 16 (35) : 16571 - 16581