Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT

被引:30
作者
Xiao, Xin [1 ]
Feng, Xinlong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
关键词
multi-object pedestrian tracking; YOLOv8; GhostNet; OC-SORT; object detection;
D O I
10.3390/s23208439
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Multi-object pedestrian tracking plays a crucial role in autonomous driving systems, enabling accurate perception of the surrounding environment. In this paper, we propose a comprehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection algorithm with the OC-SORT tracking algorithm. First, we train the improved YOLOv8 model on the Crowdhuman dataset for accurate pedestrian detection. The integration of advanced techniques such as softNMS, GhostConv, and C3Ghost Modules results in a remarkable precision increase of 3.38% and an mAP@0.5:0.95 increase of 3.07%. Furthermore, we achieve a significant reduction of 39.98% in parameters, leading to a 37.1% reduction in model size. These improvements contribute to more efficient and lightweight pedestrian detection. Next, we apply our enhanced YOLOv8 model for pedestrian tracking on the MOT17 and MOT20 datasets. On the MOT17 dataset, we achieve outstanding results with the highest HOTA score reaching 49.92% and the highest MOTA score reaching 56.55%. Similarly, on the MOT20 dataset, our approach demonstrates exceptional performance, achieving a peak HOTA score of 48.326% and a peak MOTA score of 61.077%. These results validate the effectiveness of our approach in challenging real-world tracking scenarios.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics [J].
Bernardin, Keni ;
Stiefelhagen, Rainer .
EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2008, 2008 (1)
[2]   Multi-Object Tracking and Segmentation Via Neural Message Passing [J].
Braso, Guillem ;
Cetintas, Orcun ;
Leal-Taixe, Laura .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (12) :3035-3053
[3]   MEAN SHIFT, MODE SEEKING, AND CLUSTERING [J].
CHENG, YZ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (08) :790-799
[4]   Deep learning in video multi-object tracking: A survey [J].
Ciaparrone, Gioele ;
Luque Sanchez, Francisco ;
Tabik, Siham ;
Troiano, Luigi ;
Tagliaferri, Roberto ;
Herrera, Francisco .
NEUROCOMPUTING, 2020, 381 :61-88
[5]  
Dendorfer P., 2020, Mot20: A benchmark for multi object tracking in crowded scenes, DOI 10.48550/arXiv.2003.09003
[6]   A Review of Deep Learning-Based Visual Multi-Object Tracking Algorithms for Autonomous Driving [J].
Guo, Shuman ;
Wang, Shichang ;
Yang, Zhenzhong ;
Wang, Lijun ;
Zhang, Huawei ;
Guo, Pengyan ;
Gao, Yuguo ;
Guo, Junkai .
APPLIED SCIENCES-BASEL, 2022, 12 (21)
[7]   GhostNet: More Features from Cheap Operations [J].
Han, Kai ;
Wang, Yunhe ;
Tian, Qi ;
Guo, Jianyuan ;
Xu, Chunjing ;
Xu, Chang .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1577-1586
[8]   Cascade-SORT: A robust fruit counting approach using multiple features cascade matching [J].
He, Leiying ;
Wu, Fangdong ;
Du, Xiaoqiang ;
Zhang, Guofeng .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 200
[9]   Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network [J].
Hu, Xuelong ;
Liu, Yang ;
Zhao, Zhengxi ;
Liu, Jintao ;
Yang, Xinting ;
Sun, Chuanheng ;
Chen, Shuhan ;
Li, Bin ;
Zhou, Chao .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 185
[10]   Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering [J].
Keuper, Margret ;
Tang, Siyu ;
Andres, Bjoern ;
Brox, Thomas ;
Schiele, Bernt .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) :140-153