Aromatic-Free Polymers Based All-Organic Dielectrics with Breakdown Self-Healing for High-Temperature Capacitive Energy Storage

被引:60
作者
Chen, Jie [1 ]
Pei, Zhantao [1 ]
Liu, Yijie [1 ]
Shi, Kunming [1 ]
Zhu, Yingke [1 ]
Zhang, Zhicheng [2 ]
Jiang, Pingkai [1 ]
Huang, Xingyi [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai Key Lab Elect Insulat & Thermal Ageing, Shanghai 200240, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem, Dept Mat Chem, Xian Key Lab Sustainable Energy Mat Chem, Xian 710061, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
breakdown self-healing; dielectric polymer; high-temperature capacitive energy storage; DENSITY;
D O I
10.1002/adma.202306562
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-temperature dielectric polymers are becoming increasingly desirable for capacitive energy storage in renewable energy utilization, electrified transportation, and pulse power systems. Current dielectric polymers typically require robust aromatic molecular frameworks to ensure structural thermal stability at elevated temperatures. Nevertheless, the introduction of aromatic units compromises electrical insulation owing to pronounced pi pi interactions that facilitate electron transport and eliminate the breakdown self-healing property owing to their high carbon content. Herein, an aromatic-free polynorborne copolymer exhibiting electrical conductivity-two orders of magnitude lower than that of state-of-the-art polyetherimide-at elevated temperatures and high electric fields owing to its large bandgap (approximate to 4.64 eV) and short hopping conduction distance (approximate to 0.63 nm) is described. Density functional theory calculations demonstrate that the copolymer can effectively suppress the excitation of high-field valence electrons. Furthermore, the incorporation of trace semiconductors results in high discharge density (3.73 J cm-3) and charge-discharge efficiency (95% at 150 degrees C), outperforming existing high-temperature dielectric polymers. The excellent electrical breakdown self-healing capability of the copolymer film at elevated temperatures further demonstrates its potential for use in dielectric capacitors capable of continuous operation under extreme conditions. This work shows that the high electron transition energy between the structural units of aromatic-free polymers can effectively inhibit the high-field electron conduction and improve the high-temperature capacitive energy storage.image
引用
收藏
页数:9
相关论文
共 41 条
[1]   Significantly enhanced high-temperature capacitive energy storage in cyclic olefin copolymer dielectric films via ultraviolet irradiation [J].
Bao, Zhiwei ;
Ding, Song ;
Dai, Zhizhan ;
Wang, Yiwei ;
Jia, Jiangheng ;
Shen, Shengchun ;
Yin, Yuewei ;
Li, Xiaoguang .
MATERIALS HORIZONS, 2023, 10 (06) :2120-2127
[2]   Aggregation-Enhanced Excimer Emission of Tetraarylethene Linkers in Ladderphanes [J].
Chen, Chih-Hsien ;
Lai, Guo-Qiao ;
Luh, Tien-Yau .
MACROMOLECULES, 2021, 54 (05) :2134-2142
[3]   Dielectric polymers for emerging energy applications [J].
Chen, Jie ;
Huang, Xingyi .
SCIENCE BULLETIN, 2023, 68 (14) :1478-1483
[4]  
Chen J, 2023, NATURE, V615, P62, DOI [10.1038/s41586-023-06366-0, 10.1038/s41586-022-05671-4]
[5]   Chemical adsorption on 2D dielectric nanosheets for matrix free nanocomposites with ultrahigh electrical energy storage [J].
Chen, Jie ;
Shen, Zhonghui ;
Kang, Qi ;
Qian, Xiaoshi ;
Li, Shengtao ;
Jiang, Pingkai ;
Huang, Xingyi .
SCIENCE BULLETIN, 2022, 67 (06) :609-618
[6]   Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor [J].
Chen, Siyu ;
Meng, Guodong ;
Kong, Bo ;
Xiao, Bing ;
Wang, Zhengdong ;
Jing, Ziang ;
Gao, Yushuan ;
Wu, Guanglei ;
Wang, Hong ;
Cheng, Yonghong .
CHEMICAL ENGINEERING JOURNAL, 2020, 387
[7]   Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification [J].
Deshmukh, Ajinkya A. ;
Wu, Chao ;
Yassin, Omer ;
Mishra, Ankit ;
Chen, Lihua ;
Alamri, Abdullah ;
Li, Zongze ;
Zhou, Jierui ;
Mutlu, Zeynep ;
Sotzing, Michael ;
Rajak, Pankaj ;
Shukla, Stuti ;
Vellek, John ;
Baferani, Mohamadreza Arab ;
Cakmak, Mukerrem ;
Vashishta, Priya ;
Ramprasad, Rampi ;
Cao, Yang ;
Sotzing, Gregory .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (03) :1307-1314
[8]  
Kang SD, 2017, NAT MATER, V16, P252, DOI [10.1038/nmat4784, 10.1038/NMAT4784]
[9]   Shallow distance-dependent triplet energy migration mediated by endothermic charge-transfer [J].
Lai, Runchen ;
Liu, Yangyi ;
Luo, Xiao ;
Chen, Lan ;
Han, Yaoyao ;
Lv, Meng ;
Liang, Guijie ;
Chen, Jinquan ;
Zhang, Chunfeng ;
Di, Dawei ;
Scholes, Gregory D. ;
Castellano, Felix N. ;
Wu, Kaifeng .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   High-performing polysulfate dielectrics for electrostatic energy under harsh conditions [J].
Li, He ;
Chang, Boyce S. ;
Kim, Hyunseok ;
Xie, Zongliang ;
Laine, Antione ;
Ma, Le ;
Xu, Tianlei ;
Yang, Chongqing ;
Kwon, Junpyo ;
Shelton, Steve W. ;
Klivansky, Liana M. ;
Altoe, Virginia ;
Gao, Bing ;
Schwartzberg, Adam M. ;
Peng, Zongren ;
Ritchie, Robert O. ;
Xu, Ting ;
Salmeron, Miquel ;
Ruiz, Ricardo ;
Sharpless, K. Barry ;
Wu, Peng ;
Liu, Yi .
JOULE, 2023, 7 (01) :95-111