A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning

被引:14
|
作者
Al-Timemy, Ali H. [1 ]
Alzubaidi, Laith [2 ,3 ]
Mosa, Zahraa M. [4 ]
Abdelmotaal, Hazem [5 ]
Ghaeb, Nebras H. [1 ]
Lavric, Alexandru [6 ]
Hazarbassanov, Rossen M. [7 ,8 ]
Takahashi, Hidenori [9 ]
Gu, Yuantong [2 ,3 ]
Yousefi, Siamak [10 ,11 ]
机构
[1] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ind Transformat Training Ctr, Joint Biomech, Brisbane, Qld 4000, Australia
[4] Al Nahrain Univ, Coll Sci, Dept Phys, Baghdad, Iraq
[5] Assiut Univ, Dept Ophthalmol, Assiut 71526, Egypt
[6] Stefan Cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava 720229, Romania
[7] Univ Anhembi Morumbi, Med Sch, BR-03101001 Sao Paulo, Brazil
[8] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, BR-04021001 Sao Paulo, Brazil
[9] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi 3290431, Japan
[10] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN 38163 USA
[11] Univ Tennessee, Hlth Sci Ctr, Dept Genet Genom & Informat, Memphis, TN 38163 USA
关键词
convolutional neural networks; keratoconus; feature fusion; transfer learning; deep learning; machine learning; CORNEAL TOPOGRAPHY; RAW DATA; CLASSIFICATION;
D O I
10.3390/diagnostics13101689
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97-100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91-0.92 and an accuracy range of 88-92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] COVID-19 detection on chest radiographs using feature fusion based deep learning
    Bayram, Fatih
    Eleyan, Alaa
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (06) : 1455 - 1462
  • [32] COVID-19 detection on chest radiographs using feature fusion based deep learning
    Fatih Bayram
    Alaa Eleyan
    Signal, Image and Video Processing, 2022, 16 : 1455 - 1462
  • [33] Shallow and deep feature fusion for digital audio tampering detection
    Wang, Zhifeng
    Yang, Yao
    Zeng, Chunyan
    Kong, Shuai
    Feng, Shixiong
    Zhao, Nan
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [34] Deepfake detection: Enhancing performance with spatiotemporal texture and deep learning feature fusion
    Almestekawy, Abdelwahab
    Zayed, Hala H.
    Taha, Ahmed
    EGYPTIAN INFORMATICS JOURNAL, 2024, 27
  • [35] Local binary pattern and deep learning feature extraction fusion for COVID-19 detection on computed tomography images
    Mubarak, Auwalu Saleh
    Serte, Sertan
    Al-Turjman, Fadi
    Ameen, Zubaida Sa'id
    Ozsoz, Mehmet
    EXPERT SYSTEMS, 2022, 39 (03)
  • [36] Vehicle Detection Method Based On Deep Learning and Multi -Layer Feature Fusion
    Zhao Min
    Jia Jian
    Sun Dihua
    Tang Yi
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 5862 - 5867
  • [37] Enhancing diabetic retinopathy and macular edema detection through multi scale feature fusion using deep learning model
    Gowri, L.
    Haris, R.
    Sumathi, M.
    Raja, S. P.
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2024, : 935 - 956
  • [38] Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
    Mahmood, Mahmood A.
    Alsalem, Khalaf
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 3431 - 3448
  • [39] FFDL: Feature Fusion-Based Deep Learning Method Utilizing Federated Learning for Forged Face Detection
    Gautam, Vinay
    Kaur, Gaganpreet
    Malik, Meena
    Pawar, Ankush
    Singh, Akansha
    Kant Singh, Krishna
    Askar, S. S.
    Abouhawwash, Mohamed
    IEEE ACCESS, 2025, 13 : 5366 - 5379
  • [40] Deep Depression Detection Based on Feature Fusion and Result Fusion
    Gao, Hua
    Zhou, Yi
    Chen, Li
    Chi, Kaikai
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT IV, 2024, 14428 : 64 - 74