A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning

被引:14
|
作者
Al-Timemy, Ali H. [1 ]
Alzubaidi, Laith [2 ,3 ]
Mosa, Zahraa M. [4 ]
Abdelmotaal, Hazem [5 ]
Ghaeb, Nebras H. [1 ]
Lavric, Alexandru [6 ]
Hazarbassanov, Rossen M. [7 ,8 ]
Takahashi, Hidenori [9 ]
Gu, Yuantong [2 ,3 ]
Yousefi, Siamak [10 ,11 ]
机构
[1] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ind Transformat Training Ctr, Joint Biomech, Brisbane, Qld 4000, Australia
[4] Al Nahrain Univ, Coll Sci, Dept Phys, Baghdad, Iraq
[5] Assiut Univ, Dept Ophthalmol, Assiut 71526, Egypt
[6] Stefan Cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava 720229, Romania
[7] Univ Anhembi Morumbi, Med Sch, BR-03101001 Sao Paulo, Brazil
[8] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, BR-04021001 Sao Paulo, Brazil
[9] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi 3290431, Japan
[10] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN 38163 USA
[11] Univ Tennessee, Hlth Sci Ctr, Dept Genet Genom & Informat, Memphis, TN 38163 USA
关键词
convolutional neural networks; keratoconus; feature fusion; transfer learning; deep learning; machine learning; CORNEAL TOPOGRAPHY; RAW DATA; CLASSIFICATION;
D O I
10.3390/diagnostics13101689
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97-100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91-0.92 and an accuracy range of 88-92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Baby Cry Recognition by BCRNet Using Transfer Learning and Deep Feature Fusion
    Zhang, Ke
    Ting, Hua-Nong
    Choo, Yao-Mun
    IEEE ACCESS, 2023, 11 : 126251 - 126262
  • [22] Advanced feature fusion of radiomics and deep learning for accurate detection of wrist fractures on X-ray images
    Mohamed J. Saadh
    Qusay Mohammed Hussain
    Rafid Jihad Albadr
    Hardik Doshi
    M. M. Rekha
    Mayank Kundlas
    Amrita Pal
    Jasur Rizaev
    Waam Mohammed Taher
    Mariem Alwan
    Mahmod Jasem Jawad
    Ali M. Ali Al-Nuaimi
    Bagher Farhood
    BMC Musculoskeletal Disorders, 26 (1)
  • [23] Madhubani Art Classification using transfer learning with deep feature fusion and decision fusion based
    Varshney, Seema
    Lakshmi, C. Vasantha
    Patvardhan, C.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 119
  • [24] Novel Deep Feature Fusion Framework for Multi-Scenario Violence Detection
    Jebur, Sabah Abdulazeez
    Hussein, Khalid A.
    Hoomod, Haider Kadhim
    Alzubaidi, Laith
    COMPUTERS, 2023, 12 (09)
  • [25] Deep Feature Fusion for Rumor Detection on Twitter
    Luo, Zhirui
    Li, Qingqing
    Zheng, Jun
    IEEE ACCESS, 2021, 9 : 126065 - 126074
  • [26] Deep Learning Model for Pathogen Classification Using Feature Fusion and Data Augmentation
    Ahmad, Fareed
    Farooq, Amjad
    Khan, Muhammad Usman Ghani
    CURRENT BIOINFORMATICS, 2021, 16 (03) : 466 - 483
  • [27] Fruit type classification using deep learning and feature fusion
    Gill, Harmandeep Singh
    Murugesan, G.
    Mehbodniya, Abolfazi
    Sajja, Guna Sekhar
    Gupta, Gaurav
    Bhatt, Abhishek
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 211
  • [28] Feature Fusion of Speech Emotion Recognition Based on Deep Learning
    Liu, Gang
    He, Wei
    Jin, Bicheng
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON NETWORK INFRASTRUCTURE AND DIGITAL CONTENT (IEEE IC-NIDC), 2018, : 193 - 197
  • [29] Identification based on feature fusion of multimodal biometrics and deep learning
    Medjahed, Chahreddine
    Mezzoudj, Freha
    Rahmoun, Abdellatif
    Charrier, Christophe
    INTERNATIONAL JOURNAL OF BIOMETRICS, 2023, 15 (3-4) : 521 - 538
  • [30] Shallow and deep feature fusion for digital audio tampering detection
    Zhifeng Wang
    Yao Yang
    Chunyan Zeng
    Shuai Kong
    Shixiong Feng
    Nan Zhao
    EURASIP Journal on Advances in Signal Processing, 2022