A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning

被引:14
|
作者
Al-Timemy, Ali H. [1 ]
Alzubaidi, Laith [2 ,3 ]
Mosa, Zahraa M. [4 ]
Abdelmotaal, Hazem [5 ]
Ghaeb, Nebras H. [1 ]
Lavric, Alexandru [6 ]
Hazarbassanov, Rossen M. [7 ,8 ]
Takahashi, Hidenori [9 ]
Gu, Yuantong [2 ,3 ]
Yousefi, Siamak [10 ,11 ]
机构
[1] Univ Baghdad, Al Khwarizmi Coll Engn, Biomed Engn Dept, Baghdad, Iraq
[2] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, ARC Ind Transformat Training Ctr, Joint Biomech, Brisbane, Qld 4000, Australia
[4] Al Nahrain Univ, Coll Sci, Dept Phys, Baghdad, Iraq
[5] Assiut Univ, Dept Ophthalmol, Assiut 71526, Egypt
[6] Stefan Cel Mare Univ Suceava, Comp Elect & Automat Dept, Suceava 720229, Romania
[7] Univ Anhembi Morumbi, Med Sch, BR-03101001 Sao Paulo, Brazil
[8] Univ Fed Sao Paulo, Paulista Med Sch, Dept Ophthalmol & Visual Sci, BR-04021001 Sao Paulo, Brazil
[9] Jichi Med Univ, Dept Ophthalmol, Shimotsuke, Tochigi 3290431, Japan
[10] Univ Tennessee, Hlth Sci Ctr, Dept Ophthalmol, Memphis, TN 38163 USA
[11] Univ Tennessee, Hlth Sci Ctr, Dept Genet Genom & Informat, Memphis, TN 38163 USA
关键词
convolutional neural networks; keratoconus; feature fusion; transfer learning; deep learning; machine learning; CORNEAL TOPOGRAPHY; RAW DATA; CLASSIFICATION;
D O I
10.3390/diagnostics13101689
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97-100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with 213 eyes examined in Iraq and obtained AUCs of 0.91-0.92 and an accuracy range of 88-92%. The proposed model is a step toward improving the detection of clinical and subclinical forms of KCN.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
    Ali H. Al-Timemy
    Nebras H. Ghaeb
    Zahraa M. Mosa
    Javier Escudero
    Cognitive Computation, 2022, 14 : 1627 - 1642
  • [2] Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
    Al-Timemy, Ali H.
    Ghaeb, Nebras H.
    Mosa, Zahraa M.
    Escudero, Javier
    COGNITIVE COMPUTATION, 2022, 14 (05) : 1627 - 1642
  • [3] Deep feature fusion for hate speech detection: a transfer learning approach
    Vishwajeet Dwivedy
    Pradeep Kumar Roy
    Multimedia Tools and Applications, 2023, 82 : 36279 - 36301
  • [4] Deep feature fusion for hate speech detection: a transfer learning approach
    Dwivedy, Vishwajeet
    Roy, Pradeep Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 36279 - 36301
  • [5] Deep Transfer Learning with Enhanced Feature Fusion for Detection of Abnormalities in X-ray Images
    Alammar, Zaenab
    Alzubaidi, Laith
    Zhang, Jinglan
    Li, Yuefeng
    Lafta, Waail
    Gu, Yuantong
    CANCERS, 2023, 15 (15)
  • [6] Network intrusion detection using feature fusion with deep learning
    Abiodun Ayantayo
    Amrit Kaur
    Anit Kour
    Xavier Schmoor
    Fayyaz Shah
    Ian Vickers
    Paul Kearney
    Mohammed M. Abdelsamea
    Journal of Big Data, 10
  • [7] Network intrusion detection using feature fusion with deep learning
    Ayantayo, Abiodun
    Kaur, Amrit
    Kour, Anit
    Schmoor, Xavier
    Shah, Fayyaz
    Vickers, Ian
    Kearney, Paul
    Abdelsamea, Mohammed M.
    JOURNAL OF BIG DATA, 2023, 10 (01)
  • [8] Automatic detection of keratoconus on Pentacam images using feature selection based on deep learning
    Firat, Murat
    Cankaya, Cem
    Cinar, Ahmet
    Tuncer, Taner
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (05) : 1548 - 1560
  • [9] Deep Learning for Mesoscale Eddy Detection With Feature Fusion of Multisatellite Observations
    Xie, Huarong
    Xu, Qing
    Dong, Changming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 18351 - 18364
  • [10] Power Line Detection Based on Feature Fusion Deep Learning Network
    Zou, Kuansheng
    Jiang, Zhenbang
    Zhao, Shuaiqiang
    ADVANCES IN COMPUTER GRAPHICS, CGI 2022, 2022, 13443 : 527 - 538