A Hygroscopic Composite Backplate Enabling Passive Cooling of Photovoltaic Panels

被引:51
作者
Li, Zhenpeng [1 ]
Ma, Tao [1 ]
Ji, Fan [1 ]
Shan, He [1 ]
Dai, Yanjun [1 ]
Wang, Ruzhu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Engn Res Ctr Solar Energy & Refrigerat, MOE, Shanghai 200240, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SOLAR-CELLS; TEMPERATURE; PERFORMANCE; EFFICIENCY; WORLD;
D O I
10.1021/acsenergylett.3c00196
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cooling photovoltaics (PV) matters since elevated temperature reduces efficiency and lifetime, but it is a great challenge when simultaneously pursuing effective cooling, low material cost, and light extra components. We herein propose a composite backplate for the passive cooling of PV panels, which consists of hygroscopic hydrogels with an adsorption-evaporative cooling effect and protective membranes. Besides, instant tough bonding with conventional PV backsheet allows for the composite backplate ease of implementation. Consequently, the composite backplate demonstrates nondegrading cooling performance during multiday field tests. Compared to a normal PV panel with good ventilation conditions, the average temperature reduction of each day varies from 1.5 to 6.4 degrees C under different climate conditions, indicating the absolute energy yield would increase by 0.57% to 2.43% of the yield under 25 degrees C. Considering the nearly unchanged appearance, moderate weight increase, and low raw material costs, this composite backplate facilitates benefiting from cooling PV panels attainable.
引用
收藏
页码:1921 / 1928
页数:8
相关论文
共 41 条
[1]   Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module [J].
Carmona, Mauricio ;
Bastos, Alberto Palacio ;
Garcia, Jose Doria .
RENEWABLE ENERGY, 2021, 172 :680-696
[2]   Advanced phase change hydrogel integrating metal-organic framework for self-powered thermal management [J].
Cheng, Piao ;
Tang, Zhaodi ;
Chen, Xiao ;
Liu, Panpan ;
Zhang, Xiaowei ;
Wang, Ge .
NANO ENERGY, 2023, 105
[3]   Bio-inspired effective and regenerable building cooling using tough hydrogels [J].
Cui, Shuang ;
Ahn, Chihyung ;
Wingert, Matthew C. ;
Leung, David ;
Cai, Shengqiang ;
Chen, Renkun .
APPLIED ENERGY, 2016, 168 :332-339
[4]   Heat and mass transfer in hygroscopic hydrogels [J].
Diaz-Marin, Carlos D. ;
Zhang, Lenan ;
El Fil, Bachir ;
Lu, Zhengmao ;
Alshrah, Mohammed ;
Grossman, Jeffrey C. ;
Wang, Evelyn N. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 195
[5]   Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World - A Review [J].
Dubey, Swapnil ;
Sarvaiya, Jatin Narotam ;
Seshadri, Bharath .
PV ASIA PACIFIC CONFERENCE 2012, 2013, 33 :311-321
[6]   Physics of the temperature coefficients of solar cells [J].
Dupre, O. ;
Vaillon, R. ;
Green, M. A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 140 :92-100
[7]   Pathways toward high-efficiency solar photovoltaic thermal management for electrical, thermal and combined generation applications: A critical review [J].
Elavarasan, Rajvikram Madurai ;
Mudgal, Vijay ;
Selvamanohar, Leoponraj ;
Wang, Kai ;
Huang, Gan ;
Shafiullah, G. M. N. ;
Markides, Christos ;
Reddy, K. S. ;
Nadarajah, Mithulananthan .
ENERGY CONVERSION AND MANAGEMENT, 2022, 255
[8]   Super Atmospheric Water Harvesting Hydrogel with Alginate Chains Modified with Binary Salts [J].
Entezari, Akram ;
Ejeian, Mojtaba ;
Wang, Ruzhu .
ACS MATERIALS LETTERS, 2020, 2 (05) :471-477
[9]   Bilayer porous polymer for efficient passive building cooling [J].
Feng, Chunzao ;
Yang, Peihua ;
Liu, Huidong ;
Mao, Mingran ;
Liu, Yipu ;
Xue, Tong ;
Fu, Jia ;
Cheng, Ting ;
Hu, Xuejiao ;
Fan, Hong Jin ;
Liu, Kang .
NANO ENERGY, 2021, 85
[10]   Progress and perspectives in PTFE membrane: Preparation, modification, and applications [J].
Feng, Shasha ;
Zhong, Zhaoxiang ;
Wang, Yong ;
Xing, Weihong ;
Drioli, Enrico .
JOURNAL OF MEMBRANE SCIENCE, 2018, 549 :332-349