Well-posedness and continuity properties of the Degasperis-Procesi equation in critical Besov space

被引:7
作者
Li, Jinlu [1 ]
Yu, Yanghai [2 ]
Zhu, Weipeng [3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[3] Foshan Univ, Sch Math & Big Data, Foshan 528000, Guangdong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 200卷 / 02期
基金
中国国家自然科学基金;
关键词
Degasperis-Procesi equation; Local well-posedness; Non-uniform dependence; BLOW-UP PHENOMENA; INTEGRABLE EQUATION; ILL-POSEDNESS; CAMASSA-HOLM; CAUCHY-PROBLEM; GLOBAL EXISTENCE; WAVE SOLUTIONS; SHOCK-WAVES; STABILITY;
D O I
10.1007/s00605-022-01691-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain the local-in-time existence and uniqueness of solution to the Degasperis-Procesi equation in B-infinity,1(1)(R). Moreover, we prove that the data-to-solution of this equation is continuous but not uniformly continuous in B-infinity,1(1)(R).
引用
收藏
页码:301 / 313
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7_1
[3]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[6]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[7]  
Constantin A., 1997, Expo. Math., V15, P53
[8]   Dressing Method for the Degasperis-Procesi Equation [J].
Constantin, Adrian ;
Ivanov, Rossen .
STUDIES IN APPLIED MATHEMATICS, 2017, 138 (02) :205-226
[9]   Inverse scattering transform for the Degasperis-Procesi equation [J].
Constantin, Adrian ;
Ivanov, Rossen I. ;
Lenells, Jonatan .
NONLINEARITY, 2010, 23 (10) :2559-2575
[10]   A Riemann-Hilbert approach for the Degasperis-Procesi equation [J].
de Monvel, Anne Boutet ;
Shepelsky, Dmitry .
NONLINEARITY, 2013, 26 (07) :2081-2107