Latent Variable Forests for Latent Variable Score Estimation

被引:1
作者
Classe, Franz [1 ]
Kern, Christoph [2 ]
机构
[1] Deutsch Jugendinst eV, Nockherstr 2, D-81541 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Stat, Munich, Germany
关键词
differential item functioning; item response theory; machine learning; confirmatory factor analysis; factor scores; STRUCTURAL EQUATION MODEL; FIT INDEXES; REGRESSION;
D O I
10.1177/00131644241237502
中图分类号
G44 [教育心理学];
学科分类号
0402 ; 040202 ;
摘要
We develop a latent variable forest (LV Forest) algorithm for the estimation of latent variable scores with one or more latent variables. LV Forest estimates unbiased latent variable scores based on confirmatory factor analysis (CFA) models with ordinal and/or numerical response variables. Through parametric model restrictions paired with a nonparametric tree-based machine learning approach, LV Forest estimates latent variable scores using models that are unbiased with respect to relevant subgroups in the population. This way, estimated latent variable scores are interpretable with respect to systematic influences of covariates without being biased by these variables. By building a tree ensemble, LV Forest takes parameter heterogeneity in latent variable modeling into account to capture subgroups with both good model fit and stable parameter estimates. We apply LV Forest to simulated data with heterogeneous model parameters as well as to real large-scale survey data. We show that LV Forest improves the accuracy of score estimation if parameter heterogeneity is present.
引用
收藏
页码:1138 / 1172
页数:35
相关论文
共 47 条
  • [1] American Psychological Association, 2014, STANDARDS PSYCHOL ED
  • [2] Score-Guided Structural Equation Model Trees
    Arnold, Manuel
    Voelkle, Manuel C.
    Brandmaier, Andreas M.
    [J]. FRONTIERS IN PSYCHOLOGY, 2021, 11
  • [3] GENERALIZED RANDOM FORESTS
    Athey, Susan
    Tibshirani, Julie
    Wager, Stefan
    [J]. ANNALS OF STATISTICS, 2019, 47 (02) : 1148 - 1178
  • [4] Recursive partitioning for heterogeneous causal effects
    Athey, Susan
    Imbens, Guido
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) : 7353 - 7360
  • [5] Item Response Theory and Confirmatory Factor Analysis: Complementary Approaches for Scale Development
    Bean, Gerald J.
    Bowen, Natasha K.
    [J]. JOURNAL OF EVIDENCE-BASED SOCIAL WORK, 2021, 18 (06) : 597 - 618
  • [6] To Score or Not to Score? A Simulation Study on the Performance of Test Scores, Plausible Values, and SEM, in Regression With Socio-Emotional Skill or Personality Scales as Predictors
    Bhaktha, Nivedita
    Lechner, Clemens M.
    [J]. FRONTIERS IN PSYCHOLOGY, 2021, 12
  • [7] Bollen K.A., 1989, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, DOI [10.1002/9781118619179, DOI 10.1002/9781118619179]
  • [8] Theory-Guided Exploration With Structural Equation Model Forests
    Brandmaier, Andreas M.
    Prindle, John J.
    McArdle, John J.
    Lindenberger, Ulman
    [J]. PSYCHOLOGICAL METHODS, 2016, 21 (04) : 566 - 582
  • [9] Structural Equation Model Trees
    Brandmaier, Andreas M.
    von Oertzen, Timo
    McArdle, John J.
    Lindenberger, Ulman
    [J]. PSYCHOLOGICAL METHODS, 2013, 18 (01) : 71 - 86
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32