Fibonacci Generating Functions

被引:0
|
作者
Knapp, Michael P. [1 ]
机构
[1] Loyola Univ Maryland, Dept Math & Stat, 4501 North Charles St, Baltimore, MD 21210 USA
关键词
generating function; Fibonacci recurrence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define an integer sequence (G(n))(n is an element of Z) by setting G(0) = a, G(1) = b, and G(n) = G(n-1) + G(n-2) for all n. In this paper, we explore the problem of finding all rational numbers x such that the generating function of the sequence yields an integer when evaluated at x. We show that these numbers can be naturally divided into families and find some families that are always present. Then we give an algorithm that, for each choice of a and b, reduces the problem of finding all of the families to a finite computation.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [42] Generating functions of exponential type for orthogonal polynomials
    Kubo, I
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2004, 7 (01) : 155 - 159
  • [43] Incorporating generating functions to computational science education
    Zhang, Jun
    Shen, Fangyang
    Waguespack, Yan
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 315 - 320
  • [44] Properties of a Composition of Exponential and Ordinary Generating Functions
    Kruchinin, Dmitry, V
    Shablya, Yuriy, V
    Kruchinin, Vladimir V.
    Shelupanov, Alexander A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 705 - 711
  • [45] Equality of P-Partition Generating Functions
    Peter R. W. McNamara
    Ryan E. Ward
    Annals of Combinatorics, 2014, 18 : 489 - 514
  • [46] Quantum Recurrence Relation and Its Generating Functions
    Nakanishi, Noboru
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2013, 49 (01) : 177 - 188
  • [47] Equality of P-Partition Generating Functions
    McNamara, Peter R. W.
    Ward, Ryan E.
    ANNALS OF COMBINATORICS, 2014, 18 (03) : 489 - 514
  • [48] APPLICATION OF GENERATING FUNCTIONS TO PROBLEMS OF RANDOM WALK
    Grishin, S., V
    UFA MATHEMATICAL JOURNAL, 2022, 14 (03): : 33 - 40
  • [49] Generating functions for computing power indices efficiently
    J. M. Bilbao
    J. R. Fernández
    A. Jiménez Losada
    J. J. López
    Top, 2000, 8 (2) : 191 - 213
  • [50] Generalized (P, ω)-partitions and generating functions for trees
    Arima, I
    Tagawa, H
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (01) : 137 - 150